
EE 308 Spring 2012

Lecture 3

January 23, 2012

Assembly Language Programming

• Addition and Subtraction of Hexadecimal Numbers

• Simple Assembly Language Programming

– A simple assembly language program

– Assembling an assembly language program

– Sample MC9S12 program

– Hex code generated from sample MC9S12 program

– Things you need to know for MC9212 assembly language programming

• Introduction to Addressing Modes

– Most instrutions operate on data in memory

– Addressing mode used to find address of data in memory

– MC9S12 addressing modes: Inherent, Extended, Direct, Immediate, Indexed and
Relative

1

EE 308 Spring 2012

A Simple MC9S12 Program

• All programs and data must be placed in memory between address 0x1000 and 0x3BFF.
For our programs we will put the first instruction at 0x2000, and the first data byte at
0x1000

• Consider the following program:

ldaa $1000 ; Put contents of memory at 0x1000 into A

inca ; Add one to A

staa $1001 ; Store the result into memory at 0x1001

swi ; End program

• If the first instruction is at address 0x2000, the following bytes in memory will tell the

MC9S12 to execute the above program:

Address Value Instruction

0x2000 B6 ldaa $1000

0x2001 10

0x2002 00

0x2003 42 inca

0x2004 7A staa $1001

0x2005 10

0x2006 01

0x2007 3F swi

• If the contents of address 0x1000 were 0xA2, the program would put an 0xA3 into
address 0x1001.

2

EE 308 Spring 2012

A Simple Assembly Language Program.

• It is difficult for humans to remember the numbers (op codes) for computer instructions.
It is also hard for us to keep track of the addresses of numerous data values. Instead we
use words called mnemonics to represent instructions, and labels to represent addresses,
and let a computer programmer called an assembler to convert our program to binary
numbers (machine code).

• Here is an assembly language program to implement the previous program:

prog equ $2000 ; Start program at 0x2000

data equ $1000 ; Data value at 0x1000

org prog

ldaa input

inca

staa result

swi

org data

input: dc.b $A2

result: ds.b 1

• We would put this code into a file and give it a name, such as main.s. (Assembly
language programs usually have the extension .s or .asm.)

• Note that equ, org, dc.b and ds.b are not instructions for the MC9S12 but are di-
rectives to the assembler which make it possible for us to write assembly language
programs. The are called assembler directives or psuedo-ops. For example the psuedo-
op org tells the assembler that the starting address (origin) of our program should be
0x2000.

3

EE 308 Spring 2012

Assembling an Assembly Language Program

• A computer program called an assembler can convert an assembly language program
into machine code.

• The assembler we use in class is a part of CodeWarrior

• The assembler will produce a file called main.lst, which shows the machine code
generated.

Freescale HC12-Assembler

(c) Copyright Freescale 1987-2009

Abs. Rel. Loc Obj. code Source line

---- ---- ------ --------- -----------

1 1 0000 2000 prog equ $2000 ; Start program at 0x2000

2 2 0000 1000 data equ $1000 ; Data value at 0x1000

3 3

4 4 org prog

5 5

6 6 a002000 B610 00 ldaa input

7 7 a002003 42 inca

8 8 a002004 7A10 01 staa result

9 9 a002007 3F swi

10 10

11 11 org data

12 12 a001000 A2 input: dc.b $A2

13 13 a001001 result: ds.b 1

• This will produce a file called Project.abs.s19 which we can load into the MC9S12.

S0630000433A5C446F63756D656E747320616E642053657474696E67735C7269736F6E5C4D7920446F63756D656E74735C41636164656D69635C45453330385C53707231305C737570705C3130303132355C70315C62696E5C50726F6A6563742E6162732A

S1051000A20048

S10B2000B61000427A10013F02

S9030000FC

4

EE 308 Spring 2012

• This will produce a file called Project.abs.s19 which we can load into the MC9S12.

S0630000433A5C446F63756D656E747320616E642053657474696E67735C7269736F6E5C4D7920446F63756D656E74735C41636164656D69635C45453330385C53707231305C737570705C3130303132355C70315C62696E5C50726F6A6563742E6162732A

S1051000A20048

S10B2000B61000427A10013F02

S9030000FC

• The first line of the S19 file starts with a S0: the S0 indicates that it is the first line.

– The first line from CodeWarrior is too long for the DBug-12 monitor. You will
need to delete the first line before loading the file into the MC9S12.

• The last line of the S19 file starts with a S9: the S9 indicates that it is the last line.

• The other lines begin with a S1: the S1 indcates these lines are data to be loaded into
the MC9S12 memory.

• Here is the second line (with some spaces added):

S1 0B 2000 B6 1000 42 7A 1001 3F 02

• On the second line, the S1 is followed by a 0B. This tells the loader that there this line
has 11 (0x0B) bytes of data follow.

• The count 0B is followed by 2000. This tells the loader that the data should be put
into memory starting with address 0x2000.

• The next 16 hex numbers B61000427A10013F are the 8 bytes to be loaded into memory.
You should be able to find these bytes in the test.lst file.

• The last two hex numbers, 0x02, is a one byte checksum, which the loader can use to
make sure the data was loaded correctly.

5

EE 308 Spring 2012

Freescale HC12-Assembler

(c) Copyright Freescale 1987-2009

Abs. Rel. Loc Obj. code Source line

---- ---- ------ --------- -----------

1 1 0000 2000 prog equ $2000 ; Start program at 0x2000

2 2 0000 1000 data equ $1000 ; Data value at 0x1000

3 3

4 4 org prog

5 5

6 6 a002000 B610 00 ldaa input

7 7 a002003 42 inca

8 8 a002004 7A10 01 staa result

9 9 a002007 3F swi

10 10

11 11 org data

12 12 a001000 A2 input: dc.b $A2

13 13 a001001 result: ds.b 1

What will program do?

• ldaa input : Load contents of 0x1000 into A
(0xA2 into A)

• inca : Increment A
(0xA2 + 1 = 0xA3 -> A)

• staa result : Store contents of A to address 0x1001
(0xA3 -> adress 0x1001)

• swi : Software interrupt
(Return control to DBug-12 Monitor)

6

EE 308 Spring 2012

Simple Programs for the MC9S12

A simple MC9S12 program fragment

 asra

 org $2000
 ldaa $1000

 staa $1001

A simple MC9S12 program with assembler directives

data: equ $1000

 asra
 ldaa input

 staa result

 org prog

 org data

result: ds.b 1
input: dc.b $07

prog: equ $2000

swi

7

EE 308 Spring 2012

MC9S12 Programming Model — The registers inside the MC9S12 CPU the programmer needs to know about

015

015

015

015

0 B

D

X

Y

SP

PC

CCR

0

015

A 7 7

NIHXS Z V C

8

EE 308 Spring 2012

How the MC9S12 executes a simple program

 at address 0x1014

PC = 0x2007

Control unit reads address MSB 10

 contents of address 0x1013

Control unit reads address MSB 10

B6

13

7A

Control unit reads B6
Control decodes B6

Control units tells ALU to latch value

Control units tells memory to fetch
Control unit reads address LSB 13

Control unit reads 7A
Control decodes 7A

Control units fetches value of ACCA from ALU
Control units tells memory to store value

EXECUTION OF SIMPLE HC12 PROGRAM

6C

Control unit reads address LSB 14

14

NEGA

40

Control unit reads 40
Control unit decodes 40
Control unit tells ALU to negate ACCA

5A

LDAA $1013

STAA $1014

10

10

0x2000
0x2001
0x2002
0x2003
0x2004
0x2005
0x2006

0x1013
0x1014

PC = 0x2000

PC = 0x2001
PC = 0x2002

PC = 0x2003

PC = 0x2004

PC = 0x2005
PC = 0x2006

A

Things you need to know to write MC9S12 assembly language programs

HC12 Assembly Language Programming

Programming Model

Addressing Modes

Assembler Directives

MC9S12 Instructions

9

EE 308 Spring 2012

Addressing Modes for the MC9S12

• Most MC9S12 instructions operate on memory

• The address of the data an instruction operates on is called the effective address of that
instruction.

• Each instruction has information which tells the MC9S12 the address of the data in
memory it operates on.

• The addressing mode of the instruction tells the MC9S12 how to figure out the effective
address for the instruction.

• Each MC9S12 instructions consists of a one or two byte op code which tells the MC9S12
what to do and what addressing mode to use, followed, when necessary by one or more
bytes which tell the MC9S12 how to deterime the effective address.

– All two-byte op codes begin with an $18.

• For example, the LDAA instruction has 4 different op codes (86, 96, A6, B6), one for
each of the 4 different addressing modes (IMM, DIR, EXT, IDX).

10

EE 308 Spring 2012

Core User Guide — S12CPU15UG V1.2

407

Operation (M) ⇒ A
or
imm ⇒ A

Loads A with either the value in M or an immediate value.

CCR
Effects

Code and
CPU
Cycles

LDAA Load A LDAA

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LDAA #opr8i
LDAA opr8a
LDAA opr16a
LDAA oprx0_xysppc
LDAA oprx9,xysppc
LDAA oprx16,xysppc
LDAA [D,xysppc]
LDAA [oprx16,xysppc

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

86 ii
96 dd
B6 hh ll
A6 xb
A6 xb ff
A6 xb ee ff
A6 xb
A6 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

11

EE 308 Spring 2012

The MC9S12 has 6 addressing modes

MC9S12 ADDRESSING MODES:

Effective Address:

ADDRESSING MODE:

INH Inherent

IMM Immediate

DIR Direct

EXT Extended

Most of the HC12’s instructions access data in memory

There are several ways for the HC12 to determine which address to access

Relative (used only with branch instructions)REL

IDX Indexed (won’t study indirect indexed mode)

How the MC9S12 calculates the effective address

Memory address used by instruction

12

EE 308 Spring 2012

The Inherent (INH) addressing mode

The MC9S12 does not access memory

Inherent (INH) Addressing Mode

Instructions which work only with registers inside ALU

ABA ; Add B to A (A) + (B) −> A

18 06

87

47

TSTA ; Test A (A) − 0x00 Set CCR
97

A

X

B

There is no effective address

17

35

02

4A

C7

47

97

18

87

06

0x1000 0x2000

ASRA ; Arithmetic Shift Right A

CLRA ; Clear A (0 −> A)

62 97

A2C5

13

EE 308 Spring 2012

The Extended (EXT) addressing mode

00

Extended (EXT) Addressing Mode

Instructions which give the 16−bit address to be accessed

Effective address is specified by the two bytes following op code

A

X

B

B6 10 00 Effective Address: $1000

LDAA $1000 ; ($1000) −> A

FE 10 01
LDX $1001 ; ($1001:$1002) −> X

Effective Address: $1001

7B 10 03

STAB $1003 ; (B) −> $1003

Effective Address: $1003

17

35

02

4A

C7

FE

01

7B

03

B6

00

0x1000

10

0x2000

10

10

97

A2C5

14

EE 308 Spring 2012

The Direct (DIR) addressing mode

F1

Direct (DIR) Addressing Mode

Instructions which give 8 LSB of address (8 MSB all 0)

LDAA $20 ; ($0020) −> A
96 20

STX $21 ; (X) −> $0021:$0022
5E 21

A

X

B

Effective Address: $0020

Effective Address: $0021

8 LSB of effective address is specified by byte following op code

17 97

3502

21

20

5E

960x0020 0x2000
4A

73

A1

2A

15

EE 308 Spring 2012

The Immediate (IMM) addressing mode

86

Immediate (IMM) Addressing Mode

8B 0A

Value to be used is part of instruction

LDAA #$17 ; $17 −> A

ADDA #10 ; (A) + $0A −> A

86 17

Effective address is the address following the op code

A

X

B

Effective Address: PC + 1

Effective Address: PC + 1

97

3502

17

35

02

4A

C7

0A

17

8B

0x1000 0x2000 21

16

EE 308 Spring 2012

The Indexed (IDX, IDX1, IDX2) addressing mode

X EFF
ADDR

Y ADDR
EFF

Indexed (IDX) Addressing Mode
Effective address is obtained from X or Y register (or SP or PC)

AB 45
ADDA 5,Y ; Use (Y) + 5 as address to get value to add to r

A6 00
LDAA 0,X ; Use (X) as address to get value to put in A

Simple Forms

More Complicated Forms

Effective address: contents of X

Effective address: contents of Y + 5

62 23 Effective address: contents of X + 4

 ; then increment the number at address (X)
 ; Add 4 to X
INC 4,+X ; Pre−increment Indexed

INC 2,X− ; Post−decrement Indexed

 ; then subtract 2 from X
62 3E Effective address: contents of X

 ; Increment the number at address (X),

17

EE 308 Spring 2012

Different types of indexed addressing modes
(Note: We will not discuss indirect indexed mode)

Postincrement

Preincrement

Postdecrement

Predecrement

(X)+nLDAA n,X

LDAA −n,X (X)−n

0 to FFFF

0 to FFFF

Example
Value in X
After Done

(X)

(X)

Registers
To Use

X, Y, SP, PC

X, Y, SP, PC

Offset

LDAA n,X+ (X) (X)+n X, Y, SP

LDAA n,+X (X)+n (X)+n X, Y, SP

LDAA n,X−

1 to 8

1 to 8

1 to 8

1 to 8

X, Y, SP

X, Y, SP(X)−nLDAA n,−X (X)−n

Constant Offset

Constant Offset

ACC Offset LDAA A,X (X)+(A) (X) X, Y, SP, PC

(Does not include indirect modes)
INDEXED ADDRESSING MODES

LDAA B,X
LDAA D,X

(X)+(B)
(X)+(D)

0 to FF
0 to FF
0 to FFFF

(X)−n(X)

Address
Effective

The data books list three different types of indexed modes:

• Table 4.2 of the Core Users Guide shows details

• IDX: One byte used to specify address

– Called the postbyte

– Tells which register to use

– Tells whether to use autoincrement or autodecrement

– Tells offset to use

• IDX1: Two bytes used to specify address

– First byte called the postbyte

– Second byte called the extension

– Postbyte tells which register to use, and sign of offset

– Extension tells size of offset

• IDX2: Three bytes used to specify address

– First byte called the postbyte

– Next two bytes called the extension

– Postbyte tells which register to use

– Extension tells size of offset

18

EE 308 Spring 2012

S12CPUV2 Reference Manual, Rev. 4.0

30 Freescale Semiconductor

Table 3-1. M68HC12 Addressing Mode Summary

Addressing Mode Source Format Abbreviation Description

Inherent
INST

(no externally
supplied operands)

INH Operands (if any) are in CPU registers

Immediate
INST #opr8i

or
INST #opr16i

IMM
Operand is included in instruction stream

8- or 16-bit size implied by context

Direct INST opr8a DIR
Operand is the lower 8 bits of an address

in the range $0000–$00FF

Extended INST opr16a EXT Operand is a 16-bit address

Relative
INST rel8

or
INST rel16

REL
An 8-bit or 16-bit relative offset from the current pc

is supplied in the instruction

Indexed
(5-bit offset)

INST oprx5,xysp IDX
5-bit signed constant offset

from X, Y, SP, or PC

Indexed
(pre-decrement)

INST oprx3,–xys IDX Auto pre-decrement x, y, or sp by 1 ~ 8

Indexed
(pre-increment)

INST oprx3,+xys IDX Auto pre-increment x, y, or sp by 1 ~ 8

Indexed
(post-decrement)

INST oprx3,xys– IDX Auto post-decrement x, y, or sp by 1 ~ 8

Indexed
(post-increment)

INST oprx3,xys+ IDX Auto post-increment x, y, or sp by 1 ~ 8

Indexed
(accumulator offset)

INST abd,xysp IDX
Indexed with 8-bit (A or B) or 16-bit (D)

accumulator offset from X, Y, SP, or PC

Indexed
(9-bit offset)

INST oprx9,xysp IDX1
9-bit signed constant offset from X, Y, SP, or PC

(lower 8 bits of offset in one extension byte)

Indexed
(16-bit offset)

INST oprx16,xysp IDX2
16-bit constant offset from X, Y, SP, or PC

(16-bit offset in two extension bytes)

Indexed-Indirect
(16-bit offset)

INST [oprx16,xysp] [IDX2]
Pointer to operand is found at...

16-bit constant offset from X, Y, SP, or PC
(16-bit offset in two extension bytes)

Indexed-Indirect
(D accumulator offset)

INST [D,xysp] [D,IDX]
Pointer to operand is found at...

X, Y, SP, or PC plus the value in D

19

EE 308 Spring 2012

The Relative (REL) addressing mode

2020

20 C7

20 35

PC + 2 − 0039 −> PC

PC + 2 + 0035 −> PCBRA

BRA

$2020 BRA $2030 ; Branch to instruction at address $2030

PC + 2 + FFC7 −> PC

Relative (REL) Addressing Mode

The relative addressing mode is used only in branch and long branch instructions.

Branch instruction: One byte following op code specifies how far to branch

Treat the offset as a signed number; add the offset to the address following the

current instruction to get the address of the instruction to branch to

Long branch instruction: Two bytes following op code specifies how far to branch

Treat the offset as an usigned number; add the offset to the address following the

current instruction to get the address of the instruction to branch to

18 27 02 1A If Z == 1 then PC + 4 + 021A −> PC

If Z == 0 then PC + 4 −> PC

LBEQ

When writing assembly language program, you don’t have to calculate offset

20

0E

PC

You indicate what address you want to go to, and the assembler calculates the offset

0x2020

20

EE 308 Spring 2012

Summary of MC9S12 addressing modes

X + 300

A6 2D

REL Relative BRA $1050 20 23

LBRA $1F00 18 20 0E CF

PC + 2 + Offset

PC + 4 + Offset

X−3 (X−3 −> X)

X + 30

Extended 0x0935EXT LDAA $2035 B6 20 35

INH Inherent

IMM Immediate

DIR Direct

Name

Indexed

ABA

LDAA $35 0x0035

PC + 1

None

LDAA #$35

Example Op Code
Effective
Address

LDAA 3,X X + 3

ADDRESSING MODES

IDX
IDX1
IDX2

IDX Indexed

IDX Indexed

IDX Indexed

IDX Indexed

Postincrement

Preincrement

LDAA 3,X+ X (X+3 −> X)

LDAA 3,+X X+3 (X+3 −> X)

Postdecrement

Predecrement

LDAA 3,X−

LDAA 3,−X

X (X−3 −> X)

LDAA 30,X
LDAA 300,X A6 E2 01 2C

A6 03
A6 E0 13

96 35

86 35

18 06

A6 32

A6 22

A6 3D

A few instructions have two effective addresses:

• MOVB $2000,$3000 Move byte from address $2000 to $3000

• MOVW 0,X,0,Y Move word from address pointed to by X to address pointed to by Y

21

