EE 308 Spring 2009

EE 308

Exam 2

March 27, 2009

Name:	
•	se any of the Freescale data books, the class lecture notes, and a calculator. Show all work. Partial be given. No credit will be given if an answer appears with no supporting work.
For all the 24 MHz bu	problems in this exam, assume you are using an MS9S12 with an 8 MHz crystal, resulting in a s clock.
	ne that hcs12.h has been included, so you can refer any register in the MC9S12 by name rather address in any C code you write.
1. The f	Following questions concern writing C code.
(a)	Write some C code which will read the 16-bit unsigned number at addresses 0×3000 and 0×3001 , and will store that number into memory locations 0×1010 and 0×1011 .
(b)	Write some C code which will set bits 3 and 5 and clear bits 2 and 4 of the byte at address 0×0049 , and leave all the other bits of that byte unchanged.
(c)	Write some C code which will do the following: Wait until the TOF bit of the TFLG2 register is set. It will then read the contents of address 0x0060 (as an eight-bit number), write that number to PORTB, and then clear the TOF flag. (Assume that all bits of PORTB have been set up for output.)

EE 308 Spring 2009

2. Below are the contents of the memory of an MC9S12:

	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
FFC0																
FFD0	7E	E3	4B	7E	E5	38	21	54	05	83	09	34	2A	38	3C	03
FFE0	41	38	66	F2	7C	13	37	0 C	25	F2	0 C	38	5F	1B	42	1A
FFF0	7A	26	21	13	6A	AA	20	1F	4B	38	33	38	45	38	8 0	00

- (a) What is the address of the first instruction the MC9S12 will execute when coming out of reset?
- (b) What is the address of the first instruction of the Timer Overflow interrupt service routine?
- (c) What is the address of the first instruction of the IIC Bus interrupt service routine?

3. Below are the contents of the memory of an MC9S12:

	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
FFC0	27	05	9F	CD	99	03	84	9C	01	9В	CC	90	66	FC	93	30
FFD0	7E	E3	4B	7E	E5	38	21	54	05	83	09	34	2A	38	3C	03
FFE0	41	38	66	F2	7C	13	37	0C	25	F2	0 C	38	5F	1В	42	1A
FFF0	7A	26	21	13	6A	AA	20	1F	4B	38	33	38	45	38	08	00

The MC9S12 registers have the following values:

Reg		-					-		
	S	Χ	Н	Ι	N	Ζ	V	С	
CCR	1	1	0	0	0	1	0	1	
A:B		A.	3			Ç	92		
X				82	F2				
Y				12	F7				
SP				1C	Ε7				
PC				20	24				

Assume that the Timer Overflow interrupt has been enabled.

- (a) Describe what happens to the MC9S12 between the time that the Timer Overflow occurs and the MC9S12 starts executing the first instruction of the Timer Overflow interrupt service routine.
- (b) Fill in any values in the registers which have changed in the MC9S12 by the time it gets to the first instruction in the timer overflow interrupt service routine. (You can leave blank any register which has not changed its value.) Also, show what has happened to the stack that is,

Reg		_		_					
	S	Χ	Н	Ι	Ν	Ζ	V	С	
CCR									
A:B									
X									
Y									
SP									
PC									

Below, show the contents of the stack which were changed due to the interrupt process:

4. From the time the timer overflows to the time the MC9S12 starts executing the first instruction in the interrupt service routine, about how much time (in microseconds) has elapsed?

5. Below are the values of some timer registers in the MC9S12:

TIOS	TSCR1	TCTL1	TCTL2	TCTL3	TCTL4	TIE	TSCR2	TFLG1	TFLG2
32	80	A4	C2	5F	76	2C	84	52	00

- (a) Which timer channels are being used for output compare?
- (b) Which timer channel interrupts are enabled?
- (c) What action is timer channel 2 set to perform? (I.e., if it is set up as input capture, which edge will it capture; if it is set up as output compare ; if it is set up as output compare what action will occur when TCNT equals TC2?)
- (d) What action is timer channel 3 set to perform?
- (e) What action is timer channel 4 set to perform?
- (f) What action is timer channel 5 set to perform?
- (g) Which timer flags are set?
- (h) What is the timer prescaler set at -i.e., by what factor will the processor be divided before driving the TCNT register?
- (i) How long (in seconds) will it take for the TCNT register to overflow?

6. You are tasked with the design of a system to control the amount of light used to illuminate the stage of a microscope. You need to adjust the light intensity with a resolution of at least 0.5%. You do this by using the PWM of a MC9S12 to control the duty cycle of the lightning system.

(a) Write some C code to provide a pulse-width-modulated signal on Bit 5 of Port P of the MC9S12. Use a PWM frequency of 200 Hz. Be sure to explain the values you use.

(b) Write some C code to set the duty cycle of the PWM to 57.5%.