EE 308 - Homework 2

Due Feb. 1, 2010

1. Write an instruction sequence to take the 8 -bit number an memory location $\$ 1000$, negate it, and put the result into memory location $\$ 1100$. Also, take the 8 -bit number at memory location $\$ 1100$, negate it, and put the result into memory location $\$ 1000$. If $\$ 1000$ orignally had a -17 , and $\$ 1100$ originally had a +23 , then after the instructions are executed, $\$ 100$ should have a - 23 and $\$ 1100$ should have a +17 .
2. Write an instruction sequence which adds the eight-bit number at address $\$ 1100$ to the the 8 -bit number at locations $\$ 1101$ and stores the 16 -bit result into addresses $\$ 1000$ and $\$ 1001$. Treat the values stored in $\$ 1100$ and $\$ 1101$ as signed numbers. This should work so that $(+127)+(+127)=(+254)$, and $(-127)+(-127)=(-254)-$ that is, convert the eight-bit numbers to 16 -bit numbers before adding them. (Hint: use the SEX instruction.)
3. Consider the following program from Lab 2:
```
prog: equ $2000 ; Starting address from program
data: equ $1000 ; Starting address for data
    org prog ; Set initial program counter value
    ldx #1234 ; Immediate (IMM) addressing mode
    ldab #235
    abx ; Inherent (INH) addressing mode
    stx result ; Extend (EXT) addressing mode
    swi
    org data ; Put data starting at this location
resut: ds.w 1 ; Reserve one word (two bytes) for results
```

(a) Hand-assemble the program. That is, figure out what the op codes of the instructions are, and where they will be located in memory.
(b) How many cycles will it take the MC9S12 to execute this program. (Do not include the swi instruction.)
(c) How long will it take an MC9S12 with a 24 MHz E clock to execute this program?
(d) Determine the state of the N, Z, V and C bits after each instruction has been executed. (Assume that, when the program starts, all these bits are zero.)
(e) What will be the contents of addresses $\$ 1000$ and $\$ 1001$ after the program executes?
4. Write an instruction sequence to set the upper four bits of the number at address $\$ 0049$ to 1 , and leave the lower four bits unchanged.
5. Write an instruction sequence to clear all the odd bits and toggle all the even bits of the 8 -bit number at address $\$ 0048$. If the contents of $\$ 0048$ were 01101011 before the instruction, it would be 00010100 after the instruction.
6. Consider the following program fragment:

	ldy	$\# 5000$
loop1:	ldx	$\# 5000$
loop2:	dbne	$x, l o o p 2$
	dbne	y, loop1

(a) How many instruction cycles will it take the MC9S12 to execute the following program? (Do not consider the swi instruction.)
(b) How many seconds will this take the MC9S12 with an 24 Mhz E-clock? (You should give the answer to the nearest microsecond.)
7. An MC9S12 has the following data in its memory:

	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
10D0	10	23	3B	7 C	10	04	86	80	B 7	10	25	3 B	FC	10	18	F 3
10E0	10	F 5	FD	10	18	86	40	B 7	10	23	3 B	FC	10	12	DD	02
10F0	86	CE	A2	53	1 A	2 F	A3	10	03	86	40	B 7	10	25	3 B	86

Determine the contents of the A and X register after executing the following code fragments. (Before the first instruction, the X register has $\$ 0000$.) List the values in hexadecimal. Also, indicate what addressing mode is used, and what the effective address of the instruction is. (Assume that the first instruction is at address $\$ 2000$, and that the instructions that follow are in subsequent locations - i.e., the instruction of (a) takes two bytes, so the first instruction of (b) is at address $\$ 2002$.)
(a) Idaa \#43
(b) Idaa \$10E7
(c) 1 dx \$10E0
ldaa $-2, X$
(d) ldx \#10E0
ldaa $-2, \mathrm{X}$
(e) $1 \mathrm{dx} \# \$ 10 \mathrm{E} 0$
ldaa 2,+X
(f) 1 dx \#\$10E0
ldaa 2,X+

