
EE 308 Spring 2010

Exam 1
Feb. 24

• You will be able to use all of the class handouts from the Motorola data manuals on
the exam, and one page of notes.

• No calculators will be allowed for the exam.

• Numbers

– Decimal to Hex (signed and unsigned)

– Hex to Decimal (signed and unsigned)

– Binary to Hex

– Hex to Binary

– Addition and subtraction of fixed-length hex numbers

– Overflow, Carry, Zero, Negative bits of CCR

• Programming Model

– Internal registers – A, B, (D = AB), X, Y, SP, PC, CCR

• Addressing Modes and Effective Addresses

– INH, IMM, DIR, EXT, REL, IDX (Not Indexed Indirect)

– How to determine effective address

• Instructions

– What they do - Core Users Guide

– What machine code is generated

– How many cycles to execute

– Effect on CCR

– Branch instructions – which to use with signed and which with unsigned

• Machine Code

– Reverse Assembly

• Stack and Stack Pointer

– What happens to stack and SP for instructions (e.g., PSHX, JSR)

– How the SP is used in getting to and leaving subroutines

• Assembly Language

– Be able to read and write simple assembly language program

– Know basic assembler directives – e.g., equ, dc.b, ds.w

– Flow charts

1

EE 308 Spring 2010

An MC9S12 has the following data in its memory:

0 1 2 3 4 5 6 7 8 9 A B C D E F

10D0 10 23 3B 7C 10 04 86 80 B7 10 25 3B FC 10 18 F3

10E0 10 F5 FD 10 18 86 40 B7 10 23 3B FC 10 12 DD 02

10F0 86 CE A2 53 1A 2F A3 10 03 86 40 B7 10 25 3B 86

Determine the contents of the A and X register after executing the following code frag-
ments. (Before the first instruction, the X register has $0000.) List the values in hexadecimal.
Also, indicate what addressing mode is used, and what the effective address of the instruc-
tion is. (Assume that the first instruction is at address $2000, and that the instructions that
follow are in subsequent locations – i.e., the instruction of (a) takes two bytes, so the first
instruction of (b) is at address $2002.)

a. ldaa #43

b. ldaa $10E7

c. ldx $10E0

ldaa -2,X

d. ldx #$10E0

ldaa -2,X

e. ldx #$10E0

ldaa 2,+X

f. ldx #$10E0

ldaa 2,X+

2

EE 308 Spring 2010

An MC9S12 has the following data in its memory:

0 1 2 3 4 5 6 7 8 9 A B C D E F

10D0 10 23 3B 7C 10 04 86 80 B7 10 25 3B FC 10 18 F3

10E0 10 F5 FD 10 18 86 40 B7 10 23 3B FC 10 12 DD 02

10F0 86 CE A2 53 1A 2F A3 10 03 86 40 B7 10 25 3B 86

Determine the contents of the A and X register after executing the following code frag-
ments. (Before the first instruction, the X register has $0000.) List the values in hexadecimal.
Also, indicate what addressing mode is used, and what the effective address of the instruc-
tion is. (Assume that the first instruction is at address $2000, and that the instructions that
follow are in subsequent locations – i.e., the instruction of (a) takes two bytes, so the first
instruction of (b) is at address $2002.)

a. 2000: ldaa #43 Op code: 86 43

LDAA #43 located at address $2000
Addressing mode: IMM, Effective address: $2001 (PC + 1)
A: $2B, X: $0000

b. 2002: ldaa $10E7 Op code: B6 10 E7

Addressing mode: EXT, Effective address: $10E7
A: $B7, X: $0000 (A loads contents 0f $10E7)

c. 2005: ldx $10E0

2008: ldaa -2,X Op code: FE 10 E0 A6 1E

ldx addressing mode: EXT, Effective address: $10E0
ldaa addressing mode: IDX, Effective address: $10F3
A: $53, X: $10F5

X loads contents of $10E0, which puts $10F5 into X
A loads contents of ($01F5 - 2 = $10F3), which puts $53 into A

d. 200A: ldx #$10E0

200D: ldaa -2,X Op code: CE 10 E0 A6 1E

ldx instruction located at address $200A
ldx addressing mode: IMM, Effective address: $200B
ldaa addressing mode: IDX, Effective address: $10DE
A: $18, X: $10E0

X is loaded with $10E0
A loads contents of ($01E0 - 2 = $10DE), which puts $18 into A

3

EE 308 Spring 2010

e. 200F: ldx #$10E0

2012: ldaa 2,+X Op code: CE 10 E0 A6 21

ldx instruction located at address $200F
ldx addressing mode: IMM, Effective address: $2010
ldaa addressing mode: IDX, Effective address: $10E2
A: $FD, X: $10E2

X is loaded with $10E0
A loads contents of ($01E0 + 2 = $10E2), which puts $FD into A
X is pre-incremented to $10E2

f. 2014: ldx #$10E0

2017: ldaa 2,X+ Op code: CD 10 E0 A6 31

ldx instruction located at address $2014
ldx addressing mode: IMM, Effective address: $2015
ldaa addressing mode: IDX, Effective address: $10E0
A: $10, X: $10E2

X is loaded with $10E0
A loads contents of $01E0, which puts $10 into A
X is post-incremented to $10E2

4

EE 308 Spring 2010

USING INTERRUPTS ON THE MC9S12

What happens when the MC9S12 receives an unmasked interrupt?

a. Finish current instruction

b. Push all registers onto the stack

c. Set I bit of CCR

d. Load Program Counter from interrupt vector for highest priority interrupt which is
pending

The following (from the MC9S12DP256B Device User Guide) shows the exception
priorities. The Reset is the highest priority, the Clock Monitor Fail Reset the next
hightest, etc.

5

EE 308 Spring 2010

MC9S12DP256B Device User Guide — V02.13

77

Section 5 Resets and Interrupts

5.1 Overview

Consult the Exception Processing section of the HCS12 Core User Guide for information on resets and
interrupts.

5.2 Vectors

5.2.1 Vector Table

Table 5-1 lists interrupt sources and vectors in default order of priority.

Table 5-1 Interrupt Vector Locations

Vector Address Interrupt Source CCR
Mask Local Enable HPRIO Value

to Elevate
$FFFE, $FFFF Reset None None –

$FFFC, $FFFD Clock Monitor fail reset None PLLCTL (CME, SCME) –

$FFFA, $FFFB COP failure reset None COP rate select –

$FFF8, $FFF9 Unimplemented instruction trap None None –

$FFF6, $FFF7 SWI None None –

$FFF4, $FFF5 XIRQ X-Bit None –

$FFF2, $FFF3 IRQ I-Bit IRQCR (IRQEN) $F2

$FFF0, $FFF1 Real Time Interrupt I-Bit CRGINT (RTIE) $F0

$FFEE, $FFEF Enhanced Capture Timer channel 0 I-Bit TIE (C0I) $EE

$FFEC, $FFED Enhanced Capture Timer channel 1 I-Bit TIE (C1I) $EC

$FFEA, $FFEB Enhanced Capture Timer channel 2 I-Bit TIE (C2I) $EA

$FFE8, $FFE9 Enhanced Capture Timer channel 3 I-Bit TIE (C3I) $E8

$FFE6, $FFE7 Enhanced Capture Timer channel 4 I-Bit TIE (C4I) $E6

$FFE4, $FFE5 Enhanced Capture Timer channel 5 I-Bit TIE (C5I) $E4

$FFE2, $FFE3 Enhanced Capture Timer channel 6 I-Bit TIE (C6I) $E2

$FFE0, $FFE1 Enhanced Capture Timer channel 7 I-Bit TIE (C7I) $E0

$FFDE, $FFDF Enhanced Capture Timer overflow I-Bit TSRC2 (TOF) $DE

$FFDC, $FFDD Pulse accumulator A overflow I-Bit PACTL (PAOVI) $DC

$FFDA, $FFDB Pulse accumulator input edge I-Bit PACTL (PAI) $DA

$FFD8, $FFD9 SPI0 I-Bit SP0CR1 (SPIE, SPTIE) $D8

$FFD6, $FFD7 SCI0 I-Bit
SC0CR2

(TIE, TCIE, RIE, ILIE)
$D6

$FFD4, $FFD5 SCI1 I-Bit
SC1CR2

(TIE, TCIE, RIE, ILIE)
$D4

$FFD2, $FFD3 ATD0 I-Bit ATD0CTL2 (ASCIE) $D2

$FFD0, $FFD1 ATD1 I-Bit ATD1CTL2 (ASCIE) $D0

$FFCE, $FFCF Port J I-Bit PTJIF (PTJIE) $CE

$FFCC, $FFCD Port H I-Bit PTHIF(PTHIE) $CC

$FFCA, $FFCB Modulus Down Counter underflow I-Bit MCCTL(MCZI) $CA

6

EE 308 Spring 2010

MC9S12DP256B Device User Guide — V02.13

78

5.3 Effects of Reset

When a reset occurs, MCU registers and control bits are changed to known start-up states. Refer to the
respective module Block User Guides for register reset states.

5.3.1 I/O pins

Refer to the HCS12 Core User Guides for mode dependent pin configuration of port A, B, E and K out of
reset.

Refer to the PIM Block User Guide for reset configurations of all peripheral module ports.

$FFC8, $FFC9 Pulse Accumulator B Overflow I-Bit PBCTL(PBOVI) $C8

$FFC6, $FFC7 CRG PLL lock I-Bit CRGINT(LOCKIE) $C6

$FFC4, $FFC5 CRG Self Clock Mode I-Bit CRGINT (SCMIE) $C4

$FFC2, $FFC3 BDLC I-Bit DLCBCR1(IE) $C2

$FFC0, $FFC1 IIC Bus I-Bit IBCR (IBIE) $C0

$FFBE, $FFBF SPI1 I-Bit SP1CR1 (SPIE, SPTIE) $BE

$FFBC, $FFBD SPI2 I-Bit SP2CR1 (SPIE, SPTIE) $BC

$FFBA, $FFBB EEPROM I-Bit EECTL(CCIE, CBEIE) $BA

$FFB8, $FFB9 FLASH I-Bit FCTL(CCIE, CBEIE) $B8

$FFB6, $FFB7 CAN0 wake-up I-Bit CAN0RIER (WUPIE) $B6

$FFB4, $FFB5 CAN0 errors I-Bit CAN0RIER (CSCIE, OVRIE) $B4

$FFB2, $FFB3 CAN0 receive I-Bit CAN0RIER (RXFIE) $B2

$FFB0, $FFB1 CAN0 transmit I-Bit CAN0TIER (TXEIE2-TXEIE0) $B0

$FFAE, $FFAF CAN1 wake-up I-Bit CAN1RIER (WUPIE) $AE

$FFAC, $FFAD CAN1 errors I-Bit CAN1RIER (CSCIE, OVRIE) $AC

$FFAA, $FFAB CAN1 receive I-Bit CAN1RIER (RXFIE) $AA

$FFA8, $FFA9 CAN1 transmit I-Bit CAN1TIER (TXEIE2-TXEIE0) $A8

$FFA6, $FFA7 CAN2 wake-up I-Bit CAN2RIER (WUPIE) $A6

$FFA4, $FFA5 CAN2 errors I-Bit CAN2RIER (CSCIE, OVRIE) $A4

$FFA2, $FFA3 CAN2 receive I-Bit CAN2RIER (RXFIE) $A2

$FFA0, $FFA1 CAN2 transmit I-Bit CAN2TIER (TXEIE2-TXEIE0) $A0

$FF9E, $FF9F CAN3 wake-up I-Bit CAN3RIER (WUPIE) $9E

$FF9C, $FF9D CAN3 errors I-Bit CAN3RIER (TXEIE2-TXEIE0) $9C

$FF9A, $FF9B CAN3 receive I-Bit CAN3RIER (RXFIE) $9A

$FF98, $FF99 CAN3 transmit I-Bit CAN3TIER (TXEIE2-TXEIE0) $98

$FF96, $FF97 CAN4 wake-up I-Bit CAN4RIER (WUPIE) $96

$FF94, $FF95 CAN4 errors I-Bit CAN4RIER (CSCIE, OVRIE) $94

$FF92, $FF93 CAN4 receive I-Bit CAN4RIER (RXFIE) $92

$FF90, $FF91 CAN4 transmit I-Bit CAN4TIER (TXEIE2-TXEIE0) $90

$FF8E, $FF8F Port P Interrupt I-Bit PTPIF (PTPIE) $8E

$FF8C, $FF8D PWM Emergency Shutdown I-Bit PWMSDN (PWMIE) $8C

$FF80 to
$FF8B

Reserved

7

EE 308 Spring 2010

Most interrupts have both a specific mask and a general mask. For most interrupts the
general mask is the I bit of the CCR. For the TOF interrupt the specific mask is the TOI
bit of the TSCR2 register.

Before using interrupts, make sure to:

a. Load stack pointer

• Done for you in C by the C startup code

b. Write Interrupt Service Routine

• Do whatever needs to be done to service interrupt

– You cannot pass a variable to an ISR. If the ISR needs to know the value of a
variable used in another part of the program, that variable must be global

– You cannot return a variable from an ISR to another part of the program. If
the program needs to know the value of a variable set in an ISR, that variable
must be global

• Clear interrupt flag

• Exit with the RTI instruction

– Use the interrupt key word in the CodeWarrior compiler

– Tells compiler to exit function with rti instruction rather than rts instruction

c. Load address of interrupt service routine into interrupt vector

• E.g., UserTimerOvf = (unsigned short) &toi_isr;

d. Do any setup needed for interrupt

• For example, for the TOF interrupt, turn on timer and set prescaler

e. Enable specific interrupt

f. Enable interrupts in general (clear I bit of CCR with cli instruction

Can disable all (maskable) interrupts with the sei instruction.

• When the MC9S12 is reset, the interrupts are disabled. Some compilers enable inter-
rupts by default, so your code should turn off interrupts before doing setup.

• Can do this with __asm(sei);

• Can also do the following:

#define disable() __asm(sei)

#define enable() __asm(cli)

and then use more C-like disable(); and enable();

8

EE 308 Spring 2010

Example of C program using Timer Overflow Interrupt

#include <hidef.h> /* common defines and macros */

#include "derivative.h" /* derivative-specific definitions */

#include "vectors12.h" /* DBug12 RAM-based interrupt vectors */

#define enable() __asm(cli)

#define disable() __asm(sei)

interrupt void toi_isr(void); /* Function prototype */

void main(void)

{

disable();

DDRB = 0xff; /* Make Port B output */

/* Setup for Timer Overflow Interrupt */

TSCR1 = 0x80; /* Turn on timer */

TSCR2 = 0x06; /* Set prescaler so interrupt period is 175 ms */

UserTimerOvf = (unsigned short) &toi_isr;

TSCR2 = TSCR2 | 0x80; /* Enable timer overflow interrupt */

/* Done with setup */

enable(); /* Enable interrupts (clear I bit) */

while (1)

{

__asm(wai); /* Do nothing - go into low power mode */

}

}

interrupt void toi_isr(void)

{

PORTB = PORTB+1;

TFLG2 = 0x80; /* Clear timer interrupt flag */

}

9

EE 308 Spring 2010

An example of the MC9S12 registers and stack when a TOF interrupt is
received

A B

X

Y

SP

PC

CCR

FFE0

FFDF

FFDE

FFDD

FFDC

FFDB

FFDA

FFD9

FFD8

FFD7

FFD6

AA BB

0123

4567

07

3A

4B

52

67

79

HC12 STATE BEFORE RECEIVING TOF INTERRUPT

3C00

1015

3C00

3BFF

3BFE

3BFD

3BFC

3BFB

3BFA

3BF9

3BF8

3BF7

3BF6

10

10

10

10

10

10

10

EE 308 Spring 2010

An example of the MC9S12 registers and stack just after a TOF interrupt is
received

• All of the MC9S12 registers are pushed onto the stack, the PC is loaded with the
contents of the Interrupt Vector, and the I bit of the CCR is set

A B

X

Y

SP

PC

CCR

FFE0

FFDF

FFDE

FFDD

FFDC

FFDB

FFDA

FFD9

FFD8

FFD7

FFD6

AA BB

0123

4567

17

HC12 STATE AFTER RECEIVING TOF INTERRUPT

3A

4B

52

67

79

A

Y

X

B

A

CCR

Return
Address

67

45

23

01

AA

BB

07

15

10

10

10

10

10

10

10

103A

3BF6

3BF7

3BF8

3BF9

3BFA

3BFB

3BFC

3BFD

3BFE

3BFF

3C00

3BF7

11

EE 308 Spring 2010

Interrupt vectors for the MC9S12

• The interrupt vectors for the MC9S12DP256 are located in memory from 0xFF80 to
0xFFFF.

• These vectors are programmed into Flash EEPROM and are very difficult to change

• DBug12 redirects the interrupts to a region of RAM where they are easy to change

• For example, when the MC9S12 gets a TOF interrupt:

– It loads the PC with the contents of 0xFFDE and 0xFFDF.

– The program at that address tells the MC9S12 to look at address 0x3E5E and
0x3E5F.

– If there is a 0x0000 at these two addresses, DBug12 gives an error stating that the
interrupt vector is uninitialized.

– If there is anything else at these two addresses, DBug12 loads this data into the
PC and executes the routine located there.

– To use the TOF interrupt you need to put the address of your TOF ISR at ad-
dresses 0x3E5E and 0x3E5F.

• The location of the vectors is defined in include files so you don’t have to remember
them or look them up in the reference manual.

– For Assembly programs, the vectors are defined in the file hcs12.inc

UserTimerOvf equ $3E5E

– For C programs, the vectors are defined in the file vectors12.h

#define UserTimerOvf _VEC16(47) /* Maps to 0x3E5E */

12

EE 308 Spring 2010

Commonly Used Interrupt Vectors for the MC9S12DP256

Interrupt Specific General Normal DBug-12
Mask Mask Vector Vector

SPI2 SP2CR1 (SPIE, SPTIE) I FFBC, FFBD 3E3C, 3E3D
SPI1 SP1CR1 (SPIE, SPTIE) I FFBE, FFBF 3E3E, 3E3F
IIC IBCR (IBIR) I FFC0, FFC1 3E40, 3E41
BDLC DLCBCR (IE) I FFC2, FFC3 3E42, 3E43
CRG Self Clock Mode CRGINT (SCMIE) I FFC4, FFC5 3E44, 3E45
CRG Lock CRGINT (LOCKIE) I FFC6, FFC7 3E46, 3E47
Pulse Acc B Overflow PBCTL (PBOVI) I FFC8, FFC9 3E48, 3E49
Mod Down Ctr UnderFlow MCCTL (MCZI) I FFCA, FFCB 3E4A, 3E4B
Port H PTHIF (PTHIE) I FFCC, FFCD 3E4C, 3E4D
Port J PTJIF (PTJIE) I FFCE, FFCF 3E4E, 3E4F
ATD1 ATD1CTL2 (ASCIE) I FFD0, FFD1 3E50, 3E51
ATD0 ATD0CTL2 (ASCIE) I FFD2, FFD3 3E52, 3E53
SCI1 SC1CR2 I FFD4, FFD5 3E54, 3E55

(TIE, TCIE, RIE, ILIE)
SCI0 SC0CR2 I FFD6, FFD7 3E56, 3E57

(TIE, TCIE, RIE, ILIE)
SPI0 SP0CR1 (SPIE) I FFD8, FFD9 3E58, 3E59
Pulse Acc A Edge PACTL (PAI) I FFDA, FFDB 3E5A, 3E5B
Pulse Acc A Overflow PACTL (PAOVI) I FFDC, FFDD 3E5C, 3E5D
Enh Capt Timer Overflow TSCR2 (TOI) I FFDE, FFDF 3E5E, 3E5F
Enh Capt Timer Channel 7 TIE (C7I) I FFE0, FFE1 3E60, 3E61
Enh Capt Timer Channel 6 TIE (C6I) I FFE2, FFE3 3E62, 3E63
Enh Capt Timer Channel 5 TIE (C5I) I FFE4, FFE5 3E64, 3E65
Enh Capt Timer Channel 4 TIE (C4I) I FFE6, FFE7 3E66, 3E67
Enh Capt Timer Channel 3 TIE (C3I) I FFE8, FFE9 3E68, 3E69
Enh Capt Timer Channel 2 TIE (C2I) I FFEA, FFEB 3E6A, 3E6B
Enh Capt Timer Channel 1 TIE (C1I) I FFEC, FFED 3E6C, 3E6D
Enh Capt Timer Channel 0 TIE (C0I) I FFEE, FFEF 3E6E, 3E6F
Real Time CRGINT (RTIE) I FFF0, FFF1 3E70, 3E71
IRQ IRQCR (IRQEN) I FFF2, FFF3 3E72, 3E73
XIRQ (None) X FFFF, FFFF 3E74, 3E75
SWI (None) (None) FFF6, FFF7 3E76, 3E77
Unimplemented Instruction (None) (None) FFF8, FFF9 3E78, 3E79
COP Failure COPCTL (None) FFFA, FFFB 3E7A, 3E7B

(CR2-CR0 COP Rate Select)
COP Clock Moniotr Fail PLLCTL (CME, SCME) (None) FFFC, FFFD 3E7C, 3E7D
Reset (None) (None) FFFE, FFFF 3E7E, 3E7F

13

EE 308 Spring 2010

EXCEPTIONS ON THE MC9S12

• Exceptions are the way a processor responds to things other than the normal sequence
of instructions in memory.

• Exceptions consist of such things as Reset and Interrupts.

• Interrupts allow a processor to respond to an event without constantly polling to see
whether the event has occurred.

• On the MC9S12 some interrupts cannot be masked — these are the Unimplemented
Instruction Trap and the Software Interrupt (SWI instruction).

• XIRQ interrupt is masked with the X bit of the Condition Code Register. Once the X
bit is cleared to enable the XIRQ interrupt, it cannot be set to disable it.

– The XIRQ interrupt is for external events such as power fail which must be re-
sponed to.

• The rest of the MC9S12 interrupts are masked with the I bit of the CCR.

– All these other interrupts are also masked with a specific interrupt mask. For
example, the Timer Overflow Interrupt is masked with the TOI bit of the TSCR2
register.

– This allows you to enable any of these other interrupts you want.

– The I bit can be set to 1 to disable all of these interrupts if needed.

14

E
E

308
S
p
rin

g
2010

The Real Time Interrupt

• Like the Timer Overflow Interrupt, the Real Time Interrupt allows you to interrupt the processor at a regular interval.

• Information on the Real Time Interrupt is in the CRG Block User Guide

• There are two clock sources for MC9S12 hardware.

– Some hardware uses the Oscillator Clock. The RTI system uses this clock.

∗ For our MC9S12, the oscillator clock is 8 MHz.

– Some hardware uses the Bus Clock. The Timer system (including the Timer Overflow Interrupt) use this clock.

∗ For our MC9S12, the bus clock is 24 MHz.

Interrupt
I Bit
CCR

.

. 1, 2, 4, 8, 16, 32, 64 .
.

.

.

D Q

VCC

Write
RTIF

Read
RTIF

RTIE Bit

RTR 6:4 (RTICTL)

1, 2, 3, 4, . . ., 16

RTR 3:0 (RTICTL)2OSC Clock 10

8 MHz

CRGINT
CRGFLG

15

EE 308 Spring 2010

• The specific interrupt mask for the Real Time Interrupt is the RTIE bit of the CRGINT
register.

• When the Real Time Interrupt occurs, the RTIF bit of the CRGFLG register is set.

– To clear the Real Time Interrupt write a 1 to the RTIF bit of the CRGFLG
register.

• The interrupt rate is set by the RTR 6:4 and RTR 2:0 bits of the RTICTL register.
The RTR 6:4 bits are the Prescale Rate Select bits for the RTI, and the RTR 2:0 bits
are the Modulus Counter Select bits to provide additional graunularity.

RTIF 0PORF LOCKIF LOCK TRACK SCMIF SCM

0

0x0037 CRGFLG

0x0038 CRGINTRTIE LOCKIE SCMIE0 0 0 0

RTR0RTR6 RTR5 RTR1 0x003B RTICTLRTR3 RTR20 RTR4

• To use the Real Time Interrupt, set the rate by writing to the RTR 6:4 and the RTR 3:0
bits of the RTICTL, and enable the interrupt by setting the RTIE bit of the CRGINT
register

– In the Real Time Interrupt ISR, you need to clear the RTIF flag by writing a 1 to
the RTIF bit of the CRGFLG register.

16

EE 308 Spring 2010

• The following table shows all possible values, in ms, selectable by the RTICTL register
(assuming the system uses a 8 MHz oscillator):

RTR 3:0 RTR 6:4

000 001 010 011 100 101 110 111

(0) (1) (2) (3) (4) (5) (6) (7)

0000 (0) Off 0.128 0.256 0.512 1.024 2.048 4.096 8.192

0001 (1) Off 0.256 0.512 1.204 2.048 4.096 8.192 16.384

0010 (2) Off 0.384 0.768 1.536 3.072 6.144 12.288 24.576

0011 (3) Off 0.512 1.024 2.048 4.096 8.192 16.384 32.768

0100 (4) Off 0.640 1.280 2.560 5.120 10.240 20.480 40.960

0101 (5) Off 0.768 1.536 3.072 6.144 12.288 24.570 49.152

0110 (6) Off 0.896 1.792 3.584 7.168 14.336 28.672 57.344

0111 (7) Off 1.024 2.048 4.096 8.192 16.384 32.768 65.536

1000 (8) Off 1.152 2.304 4.608 9.216 18.432 36.864 73.728

1001 (9) Off 1.280 2.560 5.120 10.240 20.480 40.960 81.920

1010 (A) Off 1.408 2.816 5.632 11.264 22.528 45.056 90.112

1011 (B) Off 1.536 3.072 6.144 12.288 24.576 49.152 98.304

1100 (C) Off 1.664 3.328 6.656 13.312 26.624 53.248 106.496

1101 (D) Off 1.729 3.584 7.168 14.336 28.672 57.344 114.688

1110 (E) Off 1.920 3.840 7.680 15.360 30.720 61.440 122.880

1111 (F) Off 2.048 4.096 8.192 16.384 32.768 65.536 131.072

17

EE 308 Spring 2010

• Here is a C program which uses the Real Time Interrupt:

#include <hidef.h> /* common defines and macros */

#include "derivative.h" /* derivative-specific definitions */

#include "vectors12.h" /* DBug12 RAM-based interrupt vectors */

#define enable() __asm(cli)

#define disable() __asm(sei)

interrupt void rti_isr(void);

void main(void)

{

disable();

DDRB = 0xff;

PORTB = 0;

RTICTL = 0x63; /* Set rate to 16.384 ms */

CRGINT = 0x80; /* Enable RTI interrupts */

CRGFLG = 0x80; /* Clear RTI Flag */

UserRTI = (unsigned short) &rti_isr;

enable();

while (1)

{

__asm(wai); /* Do nothing -- wait for interrupt */

}

}

interrupt void rti_isr(void)

{

PORTB = PORTB + 1;

CRGFLG = 0x80;

}

18

EE 308 Spring 2010

RTI interrupt service routine to display a global 16-bit variable called value on the
seven-segment display

interrupt void rti_isr(void)

{

static unsigned char digit=0;

const char hex2seven_seg[] = {0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D,

0x7D, 0x07, 0x7F, 0x6F, 0x77, 0x7c,

0x58, 0x5e, 0x79, 0x71};

switch (digit) {

case 0: PTP = 0x0E;

PTJ |= 0x02;

PORTB = hex2seven_seg[(value>>12)&0x0F];

break;

case 1: PTP = 0x0D;

PTJ |= 0x02;

PORTB = hex2seven_seg[(value>>8)&0x0F];

break;

case 2: PTP = 0x0B;

PTJ |= 0x02;

PORTB = hex2seven_seg[(value>>4)&0x0F];

break;

case 3: PTP = 0x07;

PTJ |= 0x02;

PORTB = hex2seven_seg[(value)&0x0F];

break;

}

if (++digit >= 4) digit = 0;

CRGFLG = 0x80;

}

• digit is declared to be static so its value remains between entries into RTI_isr

• You cannot pass a value to an interrupt service routine, so any variable from another
part of the program used by the ISR must be declared as global

• You cannot pass a value out of an ISR, so if another part of the prgram needs a value
deterimed inside an ISR, you must use a global variable. It must also be declared as
volatile so the compiler knows that its value may change outside the regular program
flow.

19

