The MC9S12 Pulse Width Modulation Subsystem

- The MC9S12 PWS subsystem allows you to control up to eight devices by adjusting the percentage of time the output is active.
- We will discuss 8 -bit, high polarity, left-aligned modes.
- Different types of devices need different PWM periods.
- The hard part of setting up the PWM subsystem is figuring out how to set up the MC9S12 to get the period you want.
- Once you determine the period in seconds, convert this to clock cycles:

Period in cycles $=$ Period in seconds $\times 24,000,000$ cycles $/ \mathrm{sec}$

- Once you have period in clock cycles, figure out how to get this value (or close to this value) using the following:

$$
\text { Period }= \begin{cases}\text { PWMPERx } \times 2^{N} & \text { if PCLKx }==0 \\ \text { PWMPERx } \times 2^{N+1} \times M & \text { if PCLKOx }==1\end{cases}
$$

- Find values of PWMPERx, N and (if using clock mode 1) M.
- Choose PWMPERx to be fairly large (typically 100 or greater).
- For channels $0,1,4$ and $5, N$ is set using the PCKA bits of register PWMPRCLK, and M is set by the eight-bit register PWMSCLA.
- For channels $2,3,6$ and $7, N$ is set using the PCKB bits of register PWMPRCLK, and M is set by the eight-bit register PWMSCLB.
- For example, to get a 10 ms period on Channel 0 :

Period in cycles $=10 \mathrm{~ms} \times 24,000,000$ cycles $/ \mathrm{sec}=240,000$

Cannot use clock mode 0 . The largest number of cycles possible using clock mode 0 is $255 \times 2^{7}=32,640$

Using clock mode 1 :

$$
240,000=\text { PWMPERO } \times 2^{N+1} \times M
$$

Let PWMPERO $=100$. Then we get the following:

N	M
0	1200
1	600
2	300
3	150
4	75
5	37.5
6	18.75
7	9.375

Since M has to be less than 256 , we can use $N=3$ or $N=4$.
For $N=3, \mathrm{M}=150$:

```
PWMCLK = PWMCLK | 0x01; // Clock mode 1 for Channel 0
PWMPRCLK = (PWMPRCLK & ~0x4) | 0x03; // N = 3 for Channel 0
PWMSCLA = 150 // M = 150 for Channel 0
PWMPERO = 100;
```

Interdependence of clocks for Channels 0,1, 4 and 5

- The clocks for Channels $0,1,4$ and 5 are interdependent
- They all use PCKA and PWMSCLA
- To set the clock for Channel n , you need to set PCKA, PCLKn, PWMSCLA (if PCLKn $==1$) and PWMPERn where $\mathrm{n}=0,1,4$ or 5

Clock Select for PWM Channels U and 1

PWM Channels 2, 3, 6 and 7

- PWM channels 2, 3, 6 and 7 are similar to PWM channels $0,1,4$ and 5
- To set the clock for Channel n, you need to set PCKB, PCLKn, PWMSCLB (if PCLKn $==1$) and PWMPERn where $\mathrm{n}=2,3,6$ or 7

Clock Select for PWM Channels 2 and 3

Using the MC9S12 PWM

1. Choose 8 -bit mode $($ PWMCTL $=0 x 00)$
2. Choose high polarity (PWMPOL $=0 \mathrm{xFF}$)
3. Choose left-aligned $($ PWMCAE $=0 x 00)$
4. Select clock mode in PWMCLK:

- $\operatorname{PCLKn}=0$ for 2^{N},
- PCLKn $=1$ for $2^{(N+1)} \times M$,

5. Select N in PWMPRCLK register:

- PCKA for channels $5,4,1,0$;
- PCKB for channels $7,6,3,2$.

6. If PCLKn $=1$, select M

- PWMSCLA $=M$ for channels $5,4,1,0$
- $\operatorname{PWMSCLB}=M$ for channels $7,6,3,2$.

7. Select PWMPERn, normally between 100 and 255.
8. Enable desired PWM channels: PWME.
9. Select PWMDTYn, normally between 0 and PWMPERn. Then

$$
\text { Duty Cycle } \mathrm{n}=\frac{\text { PWMDTYn }}{\text { PWMPERn }} \times 100 \%
$$

Change duty cycle to control speed of motor or intensity of light, etc.
10. For 0% duty cycle, choose PWMDTYn $=0 x 00$.

Program to use the MC9S12 PWM System

```
/*
    * Program to generate 15.6 kHz pulse width modulation
    * on Port P Bits 0 and 1
    *
    * To get 15.6 kHz: 24,000,000/15,600 = 1538.5
    *
    * Cannot get exactly 1538.5
*
* Use 1536, which is 2^9 x 3
*
    * Lots of ways to set up PWM to achieve this. One way is 2^3 x 192
    * Set PCKA to 3, do not use PWMSCLA, set PWMPER to 192
    *
    */
#include "hcs12.h"
main()
{
    /* Choose 8-bit mode */
    PWMCTL = 0x00;
    /* Choose left-aligned */
    PWMCAE = 0x00;
    /* Choose high polarity on all channels */
    PWMPOL = 0xFF;
    /* Select clock mode 0 for Channels 1 and O (no PWMSCLA) */
    PWMCLK = PWMCLK & ~ 0x03;
    /* Select PCKA = 3 for Channels 1 and 0 */
    PWMPRCLK = (PWMPRCLK & ~0x4) | 0x03;
    /* Select period of 192 for Channels 1 and 0 */
    PWMPER1 = 192;
    PWMPERO = 192;
    /* Enable PWM on Channels 1 and 0 */
    PWME = PWME | 0x03;
    PWMDTY1 = 96; /* 50% duty cycle on Channel 1 */
    PWMDTYO = 46; /* 25% duty cycle on Channel 0 */
    while (1)
    { /* Code to adjust duty cycle to meet requirements */ }
}
```


Analog/Digital Converters

- An Analog-to-Digital (A/D) converter converts an analog voltage into a digital number
- There are a wide variety of methods used for A/D converters Examples are:
- Flash (Parallel)
- Successive Approximation
- Sigma-Delta
- Dual Slope Converter
- A/D converters are classified according to several characteristics
- Resolution (number of bits) - typically 8 bits to 24 bits
- Speed (number of samples per second) - several samples/sec to several billion samples/sec
- Accuracy - how much error there is in the conversion
- High-resolution converters are usually slower than low-resolution converters
- The MC9S12 has a 10-bit successive approximation A/D converter (which can be used in 8-bit mode)
- The MC9S12 uses an analog multiplexer to allow eight input pins to connect to the A/D converter

Comparator

- A comparator is used in many types of A / D converters.
- A comparator is the simplest interface from an analog signal to a digital signal
- A comparator compares two voltage values on its two inputs
- If the voltage on the + input is greater than the voltage on the - input, the output will be a logic high
- If the voltage on the + input is less than the voltage on the - input, the output will be a logic low

If Vin > Vref then Vout = Vcc
If Vin < Vref then Vout $=0$

Flash (Parallel) A/D Converter

- A flash A/D converter is the simplest to understand
- A flash A/D converter compares an input voltage to a large number of reference voltages
- An n-bit flash converter uses $2^{n}-1$ comparators
- The output of the A / D converter is determined by which of the two reference voltages the input signal is between,
- Here is a 3-bit A/D converter

Flash A/D Converter

- A B-bit Flash A/D converter requires $2^{B}-1$ comparators
- An 8-bit Flash A/D requires 255 comparators
- A 12-bit Flash A/D converter would require 4,095 comparators
- Cannot integrate 4,095 comparators onto an IC
- The largest flash A/D converter is 8 bits
- Flash A/D converters can sample at several billion samples/sec

A/D Converter Resolution and Quantization

- If the voltage input voltage is 3.2516 V , the lowest 5 comparators will be turned on, and the highest 2 comparators will be turned off
- The output of the 3-bit flash A/D converter will be 5 (101)
- For a 3-bit A/D converter, which has a range from 0 to 5 V , an output of 5 indicates that the input voltage is between 3.125 V and 3.750 V
- A 3-bit A/D converter with a 5 V input range has a quantization value of 0.625 V
- The quantization value of an A / D converter can be found by

$$
\Delta V=\frac{V_{R H}-V_{R L}}{2^{b}}
$$

where $V_{R H}$ is the highest voltage the A/D converter can handle, $V_{R L}$ is the lowest voltage the A / D converter can handle, and b is the number of bits of the A / D converter

- The MC9S12 has a 10-bit A/D converter. The typical voltage range used for the MC9S12 A/D is $V_{R H}=5 \mathrm{~V}$ and $V_{R L}=0 \mathrm{~V}$, so the MC9S12 has a quantization value of

$$
\Delta V=\frac{5 \mathrm{~V}-0 \mathrm{~V}}{2^{10}}=4.88 \mathrm{mV}
$$

- The dynamic range of an A/D converter is given in decibels (dB):

$$
D R(\mathrm{~dB})=20 \log 2^{b}=20 b \log 2=6.02 b
$$

- A 10-bit A/D converter has a dynamic range of

$$
D R(\mathrm{~dB})=6.02 \times 10=60.2 \mathrm{~dB}
$$

A/D Sampling Rate

- The rate at which you sample a signal depends on how rapidly the signal is changing
- If you sample a signal too slowly, the information about the signal may be inaccurate

A 1050 Hz signal sampled at 500 Hz

- A $1,050 \mathrm{~Hz}$ signal sampled at 500 Hz looks like a 50 Hz signal
- To get full information about a signal you must sample more than twice the highest frequency in the signal
- Practical systems typically use a sampling rate of at least four times the highest frequency in the signal

Digital-to-Analog (D/A) Converters

- Many A/D converters use a D/A converter internally
- A D/A converter converts a digital signal to an analog voltage or current
- To understand how most A / D converters work, it is necessary to understand D / A converters
- The heart of a D/A converter is an inverting op amp circuit
- The output voltage of an inverting op amp circuit is proportional to the input voltage:

Digital-to-Analog (D/A) Converters

- An inverting op amp can produce an output voltage which is a linear combination of several input voltages

Digital-to-Analog (D/A) Converters

- By using input resistors which scale by factors of 2 , a summing op amp can produce an output which follows a binary pattern

Digital-to-Analog (D/A) Converters

- By using switches on the input resistors, a summing op amp can produce an output which is a binary number (representing which switches are closed) times a reference voltage

4-Bit Digital-to-Analog Converter

Slope A/D Converter

- A simple A/D converter can be constructed with a counter and a D/A converter
- The counter counts from 0 to $2^{b}-1$
- The counter drives the input of the D/A converter
- The output of the D / A converter is compared to the input voltage
- When the output of the comparator switches logic level, the generated voltage passed the input voltage
- By latching the output of the counter at this time, the input voltage can be determined (with the accuracy of the quantization value of the converter)
- Problem with Slope A/D converter: Takes 2^{b} clock cycles to test all possible values of reference voltages

SLOPE A/D CONVERTER

Successive Approximation A/D Converter

- A successive approximation (SA) A/D converter uses an intelligent scheme to determine the input voltage
- It first tries a voltage half way between $V_{R H}$ and $V_{R L}$
- It determines if the signal is in the lower half or the upper half of the voltage range
- If the input is in the upper half of the range, it sets the most significant bit of the output
- If the input is in the lower half of the range, it clears the most significant bit of the output
- The first clock cycle eliminates half of the possible values
- On the next clock cycle, the SA A/D tries a voltage in the middle of the remaining possible values
- The second clock cycle allows the SA A/D to determine the second most significant bit of the result
- Each successive clock cycle reduces the range another factor of two
- For a B-bit SA A/D converter, it takes B clock cycles to determine the value of the input voltage

SUCCESSIVE APPROXIMATION A/D CONVERTER

N Clock Cycles per Conversion

Successive Approximation A/D Converter

- An SA A/D converter can give the wrong output if the voltage changes during a conversion
- An SA A/D converter needs an input buffer which holds the input voltage constant during the conversion
- This input buffer is called a Track/Hold or Sample/Hold circuit
- It usually works by charging a capacitor to the input voltage, then disconnecting the capacitor from the input voltage during conversion
- The voltage on the capacitor remains constant during conversion
- The MC9S12 has a Track/Hold amplifier built in
- SA A/D converters have resolutions of up to 16 bits
- SA A/D converters have speeds up to several million samples per second

SUCCESSIVE APPROXIMATION A/D CONVERTER

