EE 341 Fall 2004

EE 341

From the Fourier Series to the Fourier Transform

If x(t) is not periodic, but is zero for t < -T/2 and t > T/2, then define $\tilde{x}(t)$ as x(t) made periodic with period T — i.e., $\tilde{x}(t)$ is just x(t) repeated every T.

Because $\tilde{x}(t)$ is periodic with period T, then $\omega_o = 2\pi/T$, and the Fourier series repesentation of $\tilde{x}(t)$ is:

$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_o t}$$

where

$$c_k = \frac{1}{T} \int_{-T/2}^{T/2} \tilde{x}(t) e^{-jk\omega_o t} dt$$

Change the name of a variable: let $\Delta \omega = \omega_o$ Then $T = 2\pi/\Delta\omega$.

$$c_k = \frac{\Delta\omega}{2\pi} \int_{-T/2}^{T/2} \tilde{x}(t) e^{-jk\Delta\omega t} dt$$

and

$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\Delta\omega t}
= \sum_{k=-\infty}^{\infty} \left\{ \frac{\Delta\omega}{2\pi} \int_{-T/2}^{T/2} \tilde{x}(t) e^{-jk\Delta\omega t} dt \right\} e^{jk\Delta\omega t}
= \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \left\{ \int_{-T/2}^{T/2} \tilde{x}(t) e^{-jk\Delta\omega t} dt \right\} e^{jk\Delta\omega t} \Delta\omega$$

Let

$$X(k\Delta\omega) = \int_{-T/2}^{T/2} \tilde{x}(t)e^{-jk\Delta\omega t}dt$$

Then

$$\tilde{x}(t) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} X(k\Delta\omega) e^{jk\Delta\omega t} \Delta\omega$$

EE 341 Fall 2004

Now take the limit as T goes to ∞ . Then $\Delta\omega\to 0$, $k\Delta\omega$ becomes ω , the sum becomes an integral over ω , $\tilde{x}(t)$ becomes x(t), and $X(k\Delta\omega)$ becomes $X(\omega)$:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

This is the Fourier transform for the aperiodic signal x(t).