Problem 4.20 from Orfanidis
% Problem 4.20 from Orfanidis % % Write state equations % % v1(n+1) = 0 v1(n) + 1 v2(n) + 0 v3(n) + h1 x(n) % v2(n+1) = 0 v1(n) + 0 v2(n) + 1 v3(n) + h2 x(n) % v3(n+1) = 0 v1(n) + 0 v2(n) + 0 v3(n) + h3 x(n) % % y(n) = 1 v1(n) + 0 v2(n) + 0 v3(n) + h0 x(n) % % Write state matrices from above equations % % 0 1 0 h1 % A = 0 0 1 B = h2 C = 1 0 0 D = h0 % 0 0 0 h3 % Define impulse response values h0 = 1 h1 = 2; h2 = -1; h3 = 1; % Enter state matrices A = [0 1 0;0 0 1;0 0 0]; B = [h1;h2;h3]; C = [1 0 0]; D = h0; % Define input -- length is Length(x) + Length(h) - 1 x = [1 1 2 1 2 2 1 1 0 0 0]'; % Use dlsim to find output and state variables. % Column 1 of v will be v1, column 2 will be v2, and column 3 will be v3 [y,v] = dlsim(A,B,C,D,x)