 
 
 
 
 
   
![\begin{displaymath}y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty}h[k] x[n-k]\end{displaymath}](img1.gif) 
![\begin{displaymath}y[n] = x[n] * h[n] = \sum_{k=N_0}^{N_1}h[k] x[n-k]\end{displaymath}](img2.gif) 
![\begin{displaymath}y[n] = x[n] * h[n] = \sum_{l=n-N_0}^{n-N_1}h[n-l] x[l]\end{displaymath}](img3.gif) 
![$x[n] = \delta[n]$](img4.gif) :
:
![\begin{displaymath}h[0] = 5 h[-1] - 6 h[-2] + 2 \delta[-1] = 0\end{displaymath}](img5.gif) 
![\begin{displaymath}h[1] = 5 h[0] - 6 h[-1] + 2 \delta[0] = 2\end{displaymath}](img6.gif) 
Thus, as in (b) g[0] = C1 + C2 + D, g[1] = 2 C1 + 3 C2 + D, and g[2] = 4 C1 + 9 C2 + D.
Also,
and
This gives C1 = -4, C2 = 3, and D = 1, so
n = 0:20; h = -2 * 2.^n + 2 * 3.^n; subplot(211) stem(n,h) g = -4 * 2.^n + 3 * 3.^n + (n>=0); subplot(212) stem(n,g)
![\begin{displaymath}y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty}x[k] h[n-k]
= \sum_{k=0}^{9} h[n-k] = \sum_{k=0}^{9} (0.9)^{(n-k)} u[n-k] \end{displaymath}](img7.gif) 
For n<0, u[n-k] = 0 for all k (since k only goes from 0 to 9), so y[n] = 0 for n<0
For 
 ,
u[n-k] = 1 for k up to n in the sum, so
,
u[n-k] = 1 for k up to n in the sum, so 
![\begin{displaymath}y[n] = \sum_{k=0}^{n} (0.9)^{(n-k)} = (0.9)^n \sum_{k=0}^{n} ...
...{-1})^{n+1}}{1-(0.9)^{-1}}
= 10 \left[ 1 - (0.9)^{n+1} \right] \end{displaymath}](img9.gif) 
For n>9, 
u[n-k] = 1 for all k in the sum (since k only goes up to 9), so
![\begin{displaymath}y[n] = \sum_{k=0}^{9} (0.9)^{(n-k)} = (0.9)^n \sum_{k=0}^{9} ...
...}{1-(0.9)^{-1}}
= 10 (0.9)^{n-9} \left[ 1 - (0.9)^{10} \right] \end{displaymath}](img10.gif) 
Here is a MATLAB program to plot the output:
n=-5:50; y=zeros(size(n)); ii=find((n>=0)&(n<=9)); y(ii)=10*(1-0.9.^n(ii)); ii=find(n>9); y(ii)=10*0.9.^(n(ii)-9)*(1-0.9^10); stem(n,y)
![$h[n] = h[n-1] + h[n-2] + \delta[n-1]$](img11.gif) .
Using this formula,
.
Using this formula,
![$h[0] = h[-1] + h[-2] + \delta[-1] = 0$](img12.gif) ,
and
,
and 
![$h[1] = h[0] + h[-1] + \delta[0]
= 1$](img13.gif) .
For n>1, 
h[n] = h[n-1] + h[n-2].  Thus, the impulse response of the
difference equation gives the Fibonacci series.
.
For n>1, 
h[n] = h[n-1] + h[n-2].  Thus, the impulse response of the
difference equation gives the Fibonacci series.
 .
Thus, 
yh[n] = C1 p1n u[n] + C2 p2n u[n].  Since N = 2 and M = 1,
there are no
.
Thus, 
yh[n] = C1 p1n u[n] + C2 p2n u[n].  Since N = 2 and M = 1,
there are no  s in the impulse response, and 
h[n] = C1 p1n u[n] +
C2 p2n u[n].  Therefore
s in the impulse response, and 
h[n] = C1 p1n u[n] +
C2 p2n u[n].  Therefore
 ,
and
,
and 
 ,
and
,
and 
![\begin{displaymath}h[n] = \frac{\sqrt{5}}{5} \left[ \frac{1 + \sqrt{5}}{2} \righ...
...\frac{\sqrt{5}}{5} \left[ \frac{1 - \sqrt{5}}{2} \right]^n u[n]\end{displaymath}](img18.gif) 
 
 
 
 
