MST Course – Cybersecurity Fundamentals Spring, 2022 Lecture: Distance Education

Instructor: Dr. Sihua Shao **Office:** Workman 209 **Phone:** 575-835-5932

E-mail: sihua.shao@nmt.edu

Instructor: Dr. Jizhou Tong

Office: Cramer 210 **Phone:** 575-835-5344

E-mail: jizhou.tong@nmt.edu

Course Description: Cybersecurity Fundamentals is developed to prepare primarily high-school level teachers to deliver a course that uses Kali Linux OS to teach the basics of protecting Internet-connected systems from passive vulnerabilities as well as cyber-attacks. Topics include definitions of fundamental cybersecurity terminologies, what to hack and how to hack, principles and applications of cryptography, different forms of social engineering attack, how to perform penetration tests as an ethical hacker, and the basics of vulnerability assessments.

Course Learning Outcomes:

After completion of this course, students are expected to be able to:

- Identify the definition of cybersecurity, cyber ethics and cyber-attacks
- Identify different categories of hackers and understand vulnerabilities
- Learn the simple ciphers, simple encryption models, and steganography
- Identify the definition of social engineering and introduce the social engineering tool in Kali Linux system.
- Perform penetration test according to ethical hacking laws
- Use the common tools to perform introductory vulnerability assessment

MST Program Learning Outcomes: https://nmt.edu/academics/psych-ed/graduate.php

References:

NICERC online resources: https://nicerc.org/curricula/cybersecurity-fundamentals/

Lectures:

- Chapter 1: Introduction to Cybersecurity (HW1)
- Chapter 2: Hacking (HW2)
- Chapter 3: Cryptography (HW3)
- Chapter 4: Social Engineering (HW4)
- Chapter 5: Ethical Hacking and Penetration Testing (HW5)
- Chapter 6: Vulnerability Assessment (HW6)

Homework:

There will be a total of 6 homework with 1 homework assigned to each chapter. The submission of homework will be done via Canvas as PDF files. Homework must be submitted by the posted deadline. If you are unable to meet a deadline, get in touch with the instructor immediately.

Lab:

There will be a total of 18 labs with 3 labs assigned to each chapter. The submission of labs will be done via NICE Challenge Webportal (https://portal.nice-challenge.com/login). Lab reservation must be done by instructors. Each lab reservation will span two days. To complete the labs, you need to send email to both the instructors (sihua.shao@nmt.edu and jizhou.tong@nmt.edu) to request for the reservation. In the request, specify the lab and dates (e.g., request for Backdoor/Trojan Lab 1 on Feb. 1 and Feb. 2).

Project:

There will be one course project. The project requires you to design your own syllabus based on the materials covered in the course. The submission of project will be done via Canvas as PDF files. Project must be submitted by the posted deadline. If you are unable to meet a deadline, get in touch with the instructor immediately.

Grading:

•	Homework: 40%	A	90-100	C	70-72
•	Lab: 40%	A-	86-89	C-	66-69
•	Course Project: 20%	$\mathbf{B}+$	83-85	D+	63-65
		В	80-82	D	60-62
		B-	76-79	F	<60
		C+	73-75		

Modular Course Schedules

Chapter 1. Introduction to Cybersecurity (HW1)

Module 1.1: Defining	In this module, we will introduce what cybersecurity is and challenges
Cybersecurity and	of cybersecurity briefly. To achieve cybersecurity, the students will
Challenges of	understand the current technology (hardware and software),
Cybersecurity	programming languages and operating systems, social influences, legal
	and ethical issues and public policies.
Module 1.2: Cyber	This module will help students understand what cybercrime is. It
Crime, Cyber Ethics and	covers the nature of cybercrime, some of the impacts, and cyber ethics.
Cybersecurity Career	Most of the subtopics here should be discussion-based and will be
	more impactful to students if they are allowed to research some of the
	examples and information themselves. We will also introduce the
	career in the cybersecurity field. We will show some real job
	opportunities for cybersecurity which include the job title, job
	description, and the salary. Top 5 areas where cyber security skills are
	needed will also be talked about.

Module 1.3: Cyber	In this module, we will tell students who a hacker is. Three different		
Attacks	types hackers will be introduced white hat hacker, gray hat hacker and		
	black hat hacker. The attack analysis process will be also introduced.		
	We will also talk about the top 10 cyber-attacks in today's internet		
	environment. Some tools for fighting attacks will be introduced at last		
	of this module.		
Module 1.4: Passwords	In this module, we will introduce some password cracking methods and		
	how to choose a good password, and how to be more cyber secure.		
Module 1.5: Labs	In this module, we will go over three labs – i) Display Matrix lab, ii)		
	IP- Ifconfig lab, and iii) Passwords lab, step by step with checkpoints		
	provided for student evaluations. Practices of the labs will be offered		
	on the NICE challenge platform using HTML5 web console.		

Chapter 2. Hacking (HW2)

Module 2.1: Introduction to Hacking	In the first module, we will briefly introduce the history of the hacking, from the first documented use of the word "hacking" to the most recent hacking patterns. The commonly used terms that are similar to hacking will be clarified, such as cracking, phreaking, spoofing, and Denial of Service (DoS). We will also discuss different types of hackers and their various hacking motivations.
Module 2.2: What to Hack (Malware)	In the second module, we will briefly introduce the different types of malwares, such as viruses, worms, ransomware, crypto-malware, trojan horse, backdoor, RATs, rootkit, keylogger, adware/spyware, botnets and, logic bomb. Protections against malware will be suggested.
Module 2.3: What to Hack (Email, Password, and Cloud)	In the third module, extensive discussions will be performed on the mechanism of email exchange and password formation. We will learn how to identify the compromised email and how to strengthen our passwords. In addition, a high-level analysis of the pros and cons of cloud services will be covered.
Module 2.4: How to Hack.	In the fourth module, we will introduce the basis of attack surface, including types, measure, and scope of interactions. The interaction through wireless channels will be covered with multiple paradigms. Four-point process analyzing porosity and its analogy to analyzing a sick person will be discussed. Moreover, we will cover IP address, fundamental Linux terminal commands, and ping command-based detection and attacks.
Module 2.5: Labs	In the fifth module, we will go over three labs – i) backdoor attack using reverse HTTP, ii) backdoor attack using reverse TCP, and iii) javascript keylogger attack, step by step with checkpoints provided for student evaluations. Practices of the labs will be offered on the NICE challenge platform using HTML5 web console.

Chapter 3. Cryptography (HW3)

Module 3.1: History of	In this module, we will introduce the history of cryptography briefly,
Cryptography and	talk about some components of a cryptosystem such as plaintext,
Components of a	encryption algorithm, cipher, decryption algorithm, encryption key and
Cryptosystem	decryption key. Cryptography is a method of protecting information
	from unauthorized users using codes or ciphers. When we send the
	encrypted message, the original message will be read or processed by
	only the intended user(s).
Module 3.2: Simple	In this module, we will introduce Caesar Cipher, Whitfield Diffie and
Encryption Models.	Martin Hellman Model, Transposition Cipher, Vernam or Exclusive
	OR Cipher and Vigenere Cipher.
Module 3.3: Types of	In this module, we will introduce two fundamental types of
Cryptography Systems	cryptographic systems. One is Symmetric Key Encryption. Another one
and Protocols for Secure	is Asymmetric Key Encryption. We will also talk some challenges to
Communication	contemporary encryption. After that, we will introduce three common
	encryption methods. They are hashing, digital signatures and digital
	certificates. We also will introduce TCP/IP, HTTP, HTTPS, Pretty
	Good Privacy (PGP), Secure Multipurpose Internet Mail Extension (S-
	MIME), Secure Socket Layer (SSL), Secure file transfer protocol
	(SFTP) and Data Encryption Standards (DES).
Module 3.4:	In this module, the student will learn what Steganography is.
Steganography	Steganography literally means covered writing. Steganography takes
	one piece of data and hides it within another object (message, image, or
	other file).
Module 3.5: Labs	In this module, we will go over three labs $-i$) Pass the Hash lab, ii)
	Dictionary Attack lab, and iii) Brute Force and rainbow table lab, step
	by step with checkpoints provided for student evaluations. Practices of
	the labs will be offered on the NICE challenge platform using HTML5
	web console.

Chapter 4. Social Engineering (HW4)

Module 4.1: Definitions of	In this module, we will introduce what social engineering is briefly.
Social Engineering	Both dictionary and internet definitions for social engineering will be
	talked.
Module 4.2: Why Use	In this module, we will introduce the social engineering life cycle and
Social Engineering	what a social engineering attack looks like. The students will also
	know how to spot an attack.
Module 4.3: Social	In this module, we will introduce some of popular social engineering
Engineering Attacks	attacks such as phishing, pretexting, baiting, quid pro quo and
	tailgating. We also will talk about some solution for these attacks.
Module 4.4: Policies and	In this module, the students will learn some basic rules for making a
Training	security policy for business. The students will also know how
	important the security to all of employees for a company.

Module 4.5: Labs	In this module, we will go over three labs $-i$) Credentials Harvester	
	Attack lab by using social engineering tools, ii) Phishing Attack lab by	
	using social engineering tools, and iii) Clickjacking Attack lab by	
	using social engineering tools, step by step with checkpoints provided	
	for student evaluations. Practices of the labs will be offered on the	
	NICE challenge platform using HTML5 web console.	

Chapter 5. Ethical Hacking and Penetration Testing $\left(HW5\right)$

Module 1: Ethical Hacker	In the first module, we will introduce the definition of ethical hacking
Basics and Phases of a	and some commonly used terminologies to distinguish a regular hacker
Penetration Test.	and an ethical hacker. We will cover the general models adopted and
	steps followed by an ethical hacker for a penetration test. We will also
	briefly introduce the four phases in a penetration test with further
	discussions about Phase I – Reconnaissance and Phase II – Scanning.
Module 2: Phase III –	In the second module, we will focus on Phase III – Exploitation. Once
Exploitation (e.g.,	enough information is collected in Phase I & II, in Exploitation phase,
Privilege Escalation)	the ethical hacker attempts to gain the control over a system. We will
	cover one paradigm of exploitation – privilege escalation, with the
	concepts of authentication, access control, and account types.
Module 3: Exploitation	In the third module, we will wrap up the discussions on Exploitation
Tools, Examples, and	phase with some commonly used tools. We will also enumerate several
Post Exploitation Phase.	exploitation examples. After completing the last informal phase, Phase
	IV – Post Exploitation and Maintaining Access, a thorough and
	comprehensive summary report will be generated.
Module 4: Certification,	In the fourth module, we will introduce the certification tests for ethical
Cyber Laws, and Risk	hackers. We will also discuss the legality of ethical hacking and
Assessment.	geographically diverse cyber laws with two case studies. The
	application of penetration test, such as risk assessment, will be covered.
Module 5: Labs	In the fifth module, we will go over three labs $-i$) analyze packets
	using wireshark, ii) local area network (LAN) sniffing, and iii)
	privilege escalation, step by step with checkpoints provided for student
	evaluations. Practices of the labs will be offered on the NICE challenge
	platform using HTML5 web console.

Chapter 6. Vulnerability Assessment (HW6)

Module 1: Vulnerability	In the first module, we will introduce the definition and benefits of
Assessment Basics.	vulnerability assessment (VA). VA terms - false positive and false
	negative will also be introduced. Four general VA steps will be
	discussed with some instructive examples. Further discussion will be
	provided about vulnerability scanning and types.

Module 2: VA Tools Evaluation.	In the second module, we will introduce the criteria and critical metrics that are generally utilized to evaluate the performance of a VA tool. We will also discuss the vulnerability services tools and test. Two types of service tools will be covered with one focusing on static code analysis and the other focusing on dynamic program analysis.
Module 3: Common VA Tools.	In the third module, we will introduce some commonly used VA tools, network/port scanners, and vulnerability scanners. Popular VA tools will be discussed with comprehensive examples, such as Wireshark, SolarWinds, NMAP, and Nessus. URLs for download will be provided for some VA tools that are not pre-installed in Kali Linux OS.
Module 4: Vulnerability examples and secure configurations.	In the fourth module, we will introduce examples of leveraging the vulnerability of web applications, such as code injection, cross-site scripting, and cross-site request forgery. Network instruction detection and prevention policies and rules will be discussed. System hardening and secure deployments will be covered with high-level concepts.
Module 5: Labs	In the fifth module, we will go over three labs – i) setup Damn Vulnerable Web Application (DVWA) and try different SQL injection commands, ii) try different cross-site scripting (XSS) commands to bypass server access control under DVWA, and iii) try different command injection to read files located on webserver under DVWA step by step with checkpoints provided for student evaluations. Practices of the labs will be offered on the NICE challenge platform using HTML5 web console.