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Fig. 1 (left) 10 hPa GPH field one week prior to the major SSW. (right) Time series 
of the zonal mean zonal wind ū (m/s), the amplitude (m) and the heat flux (K m/s) of 
Z1,2 at 60°N for the indicated pressure levels. The vertical black line indicates the 
central date of the warming while the green lines delimit the 10-day window period 
around the day D (*). 

W1 major SSW of 22 February 2008           

W2 major SSW of 25 January 2009  

1  Data 

Fig. 2 Long-term climatology of major SSWs using ERA-40 and ERA-Interim 
data assimilations. 

Fig. 3 Seasonal distribution of major SSWs and final warmings in ERA-40 and 
ERA-Interim data. The splitting-displacement distribution is obtained from 
Charlton and Polvani [2007] and  Cohen and Jones [2011].   

The W1-W2 major SSW distributions reveal 
different W2/W1 ratios: 0.29 for ERA-40 and 
0.11 for ERA-Interim (Fig. 3, top). Less W2 
events were observed during the ERA-
Interim reanalysis period.  

Both for the ERA-40 and the combined 
dataset, the distribution peaks in January. 
In ERA-Interim, however, January and 
February have the same number of major 
SSWs. This shows a tendency towards later 
major SSWs in more recent years, 
consistent with the occurrence of more late 
final warmings (in May) since 2002 (Fig. 3, 
bottom). 

The comparison of the W1-W2 and splitting-
displacement distributions shows that not 
all W1 events resulted into vortex 
displacements. 

5  Conclusions 
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ERA 40 (1957 2002) total mSSWs = 27
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ERA Interim (1979 2011) total mSSWs = 20

mSSWs / winter = 0.63
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ERA 40 (1957 2002) combined with ERA Interim (2003 2011) total mSSWs = 34

mSSWs / winter = 0.63
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The two data assimilations have similar 
occurrence of major SSWs, with ERA-40 
having slightly lower relative frequency 
compared to ERA-Interim (0.60 versus 
0.63) (Fig. 2). This is due to the increased 
number of major SSWs observed since the 
late 1990s [Manney et al., 2005, 2009]. 

The comparison between the two data 
assimilatons reveals the occurrence of one 
major SSW in February 1995 in ERA-
Interim (see Fig. 4), which is not detected 
in ERA-40 (Fig. 2, top) and FUB data 
[Labitzke et al., 2002]. 

In ERA-Interim and in the combined dataset, the total number of W1 and W2 events in January and 
February differs from that of the splitting-displacement distribution obtained using ERA-40 and NCEP-
NCAR data [Charlton and Polvani, 2007; Cohen and Jones, 2011]. This is referable to the 2009/10 major 
SSW that is detected in January in ERA-Interim and in February in the NCEP-NCAR reanalyses (see Fig. 4). 	
  

Major Sudden Stratospheric Warmings (SSWs) can develop differently. By analyzing ERA-40 reanalysis data Bancalà et 
al. [2012] showed that, although most of the major SSWs follows increased activity of the zonal wavenumber-1, a 
quarter of these events are caused by an amplified zonal wavenumber-2. Major SSWs are classified as wavenumber-1 
(W1) or wavenumber-2 (W2) based on the preconditioning of the polar vortex, in contrast to the criteria of Charlton and 
Polvani [2007], which distinguish between vortex splitting (S) and vortex displacement (D) events according to the 
post-warming phase. In this study, the preconditioning criterion is applied to the ERA-Interim data in order to determine 
how the W2/W1 ratio changes if a different data assimilation is considered. Also we investigate if the inclusion of 10 
additional reanalysis years significantly changes this relationship. 

•  Major warmings are identified during the NH stratospheric 
winter circulation season (ONDJFMAM) by the reversal of the 
zonal mean zonal wind (ū) at 10 hPa and 60°N, with the first 
day of easterlies defined as the central date of the warming. 

•  To distinguish different events at least 20 days of westerlies 
are needed (modified Bancalà et al. [2012] criterion). 

•  The warmings are characterized depending on which zonal 
wavenumber is responsible for the poleward eddy heat 
transport (v'T'). Following conditions are verified in a 10 day 
window period centered around the day with maximum wind 
deceleration (D): 

     1) W1 major SSW: 

             -  Z1 > Z2 (at 10 hPa, 60°N)  
       (Zn : amplitude of GPH wave of zonal wavenumber n) 

           2) W2 major SSW: 

           -  ΔZ = Z2 – Z1 > 100 m (at 50 hPa, 60°N)  
     -  Δv'T' = v'T'2 – v'T'1 > 15 K m/s (at 100 hPa, 60°N). 

    If only condition 1) is met, the major SSW is classified as a W1 
event. If instead condition 2) is satisfied at least for one day, 
the warming is classified as a W2 event.  

•  Final warmings are cases where the ū becomes easterly but 
does not return to westerly for at least 10 consecutive days. 
In addition, no day of this reference period must have wind 
speeds exceeding 5 m/s.	
  

ERA-40: 

       -  Horizontal resolution T159 (used on a 2.5°x2.5° grid)  
       -  Vertical resolution L60, model top at 0.1 hPa  
       -  45 NH winters are analyzed between 1957-2002 

ERA-Interim: 

       -  Horizontal resolution T255 (1.5°x1.5° grid) 
       -  Vertical resolution L60, model top at 0.1 hPa   
       -  32 NH winters are analyzed between 1979-2011 
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Fig. 4 Time series of the ERA-40 and ERA-Interim zonal mean zonal wind ū (m/s) at 10 hPa and 60°N, for the winters 1994/95 and 
2009/10. The continuous vertical black line indicates the central date of the warming in ERA-Interim data, while the dashed one indicates 
the central date in the NCEP-NCAR reanalysis [Cohen and Jones, 2011]. 
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Long-term Climatology 

The analysis of the different data assimilations shows that: 

•   More than 70% of all detected major SSWs are W1 events, although this may vary for different periods 

•   Different W2/W1 and splitting/displacement ratios exist. Not all W1 major SSWs led to vortex   
   displacements (about 1/3 caused splitting events), whereas all W2 events resulted into vortex splittings. 

•   This diagnostic is a useful tool to compare stratospheric winter variability in assimilation and model data. 

Case Studies	
  

Seasonal Climatology 
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