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Major Sudden Stratospheric Warmings (SSWs) can develop differently. By analyzing ERA-40 reanalysis data Bancala et
al. [2012] showed that, although most of the major SSWs follows increased activity of the zonal wavenumber-1, a
quarter of these events are caused by an amplified zonal wavenumber-2. Major SSWs are classified as wavenumber-1
(W;) or wavenumber-2 (W) based on the preconditioning of the polar vortex, in contrast to the criteria of Charlton and
Polvani [2007], which distinguish between vortex splitting (S) and vortex displacement (D) events according to the
post-warming phase. In this study, the preconditioning criterion is applied to the ERA-Interim data in order to determine
how the W,/W, ratio changes if a different data assimilation is considered. Also we investigate if the inclusion of 10
additional reanalysis years significantly changes this relationship.
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1 Data 4 Major SSWs Climatology
ERA-40:
Long-term Climatology

- Horizontal resolution T159 (used on a 2.5°x2.5° grid)
—— —

- Vertical resolution L60, model top at 0.1 hPa e 40 (1957-2002) The two data assimilations have similar
- 45 NH winters are analyzed between 1957-2002 3 w1 occurrence of major SSWs, with ERA-40

il having slightly lower relative frequency
! ——| compared to ERA-Interim (0.60 versus
- Horizontal resolution T255 (1.5°x1.5° grid) _.— = - —0.63) (Fig. 2). This is due to the increased
- Vertical resolution L60, model top at 0.1 hPa oL ERA-Interim (1979-2011) wamssw-w | NUMber of major SSWs observed since the
- 32 NH winters are analyzed between 1979-2011 : s a0 late 1990s [Manney et al., 2005, 2009].

The comparison between the two data
assimilatons reveals the occurrence of one
T T T T T major SSW in February 1995 in ERA-
4 Interim (see Fig. 4), which is not detected
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2 SSW Criteria s s o e ——

+ Major warmings are identified during the NH stratospheric

winter circulation season (ONDJFMAM) by the reversal of the V‘;Z* 4 in ERA-40 (Fig. 2, top) and FUB data
zonal mean zonal wind (@) at 10 hPa and 60°N, with the first 1 { [Labitzke et al., 2002].
day of easterlies defined as the central date of the warming. o
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+ To distinguish different events at least 20 days of westerlies || rig. 2 Long-term climatology of major SSWs using ERA-40 and ERA-Interim
are needed (modified Bancala et al. [2012] criterion). data assimilations

+ The warmings are characterized depending on which zonal Seasonal Climatology
wavenumber is responsible for the poleward eddy heat
transport (v'T"). Following conditions are verified in a 10 day oo ERAS40(1957-2002)  ERA-interim (1979-2011) ERA-40-Ineim (1957-2011)  The W,-I//, major SSW distributions reveal
window penod centered around the day with maximum wind || e} winhm] ool oo =l different W,/W, ratios: 0.29 for ERA-40 and
deceleration (D): éozo — sisos] 020 0.20) sowm| 0,11 for ERA-Interim (Fig. 3, top). Less W,
1) W, major SSW: N o o events were observed during the ERA-
- Z,> 7, (at 10 hPa, 60°N) :ODZ w; Dgz Interim reanalysis period.

(Z,: amplitude of GPH wave of zonal wavenumber n) PN e L S B e ONDJFMAM Both for the ERA-40 and the combined
i . . ozs| BRI 025 025 dataset, the distribution peaks in January.
2) W, major SSW: oz 0.20) 020 In ERA-Interim, however, January and
- AZ=2,-27,> 100 m (at 50 hPa, 60°N) o o o February have the same number of major
- AvT' =Vv'T, - v'T'; > 15 K m/s (at 100 hPa, 60°N). £ I HH 00s| I | 008 I i SSWs. This shows a tendency towards later
If only condition 1) is met, the major SSW is classified as a W, N D M AW ONDJFMAWM SN DS F M A major SSWs in more recent vyears,
event. If instead condition 2) is satisfied at least for one day, i == o o consistent with the occurrence of more late
the warming is classified as a W/, event. " oo 050 050 final warmings (in May) since 2002 (Fig. 3,
i 0.40 0.40) bottom).

+ Final warmings are cases where the 7 becomes easterly but || %°% o oo . o
does not return to westerly for at least 10 consecutive days. || o1 HH [ o mH H 010 H Jl| The comparison of the W;-W, and splitting-
In addition, no day of this reference period must have wind GND I FMAM SN T FMAN SN M AN displacement distributions shows that not
speeds exceeding 5 m/s. Fig. 3 Seasonal distribution of major SSWs and final warmings in ERA-40 and @l Wi events  resulted into  vortex

ERA-Interim data. The splitting-displacement distribution is obtained from displacements.
3 Case Studies Charlton and Polvani [2007] and Cohen and Jones [2011].
In ERA-Interim and in the combined dataset, the total number of W, and W, events in January and
W, major SSW of 22 February 2008 February differs from that of the splitting-displacement distribution obtained using ERA-40 and NCEP-
o NCAR data [Charlton and Polvani, 2007; Cohen and Jones, 2011]. This is referable to the 2009/10 major
B M SSW that is detected in January in ERA-Interim and in February in the NCEP-NCAR reanalyses (see Fig. 4).
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in the NCEP-NCAR reanalysis [Cohen and Jones, 2011]
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5 Conclusions

The analysis of the different data assimilations shows that:

e « More than 70% of all detected major SSWs are W, events, although this may vary for different periods

rior to the major SSW. (right) Time series
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Fig. 1 (left) 10 hPa GPH fi
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- Different W.,/W, and splitting/displacement ratios exist. Not all W, major SSWs led to vortex
displacements (about 1/3 caused splitting events), whereas all W, events resulted into vortex splittings.

« This diagnostic is a useful tool to compare stratospheric winter variability in assimilation and model data.
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