ACE-FTS measurements of anthropogenic ozone depleting substances

Felicia Kolonjari¹, Kaley A. Walker^{1, 2}, Chris D. Boone², Susan Strahan³, Chris McLinden⁴, Gloria L. Manney^{5*,6}, William H. Daffer⁵, and Peter F. Bernath^{7,8}

NOSPHERIC

¹Department of Physics, University of Toronto, Toronto, Canada
²Department of Chemistry, University of Waterloo, Waterloo, Canada
³Universities Space Research Association & NASA Goddard Space Flight Center, Greenbelt, USA
⁴Environment Canada, Toronto, Canada
⁵Jet Propulsion Laboratory, Pasadena, USA
⁶Department of Physics, New Mexico Institute of Mining and Technology, Socorro, USA
⁷Department of Chemistry, University of York, York, UK
⁸Department of Chemistry, University of York, York, UK
* Now at NorthWest Research Associates, Socorro, USA

SPARC-DA Workshop, Soccoro, NM, June 11-13, 2012

Outline

- How does ACE-FTS measure ODSs?
- Why should CFCs and HCFCs be examined?
- What do the ACE-FTS measurements look like?
- How do they compare to independent measurements?
- How does the GMI model represent these ODSs?

The Atmospheric Chemistry Experiment (ACE)

- On-board Canadian satellite SCISAT launched on August 12th 2003
- The primary goal of the mission is to study the chemical and dynamical processes controlling ozone distribution.

- The primary instrument is a Fourier transform spectrometer (ACE-FTS)
 - High spectral resolution (0.02 cm⁻¹) infrared FTS
 - Wide spectral range (750-4400 cm⁻¹) provides profiles of over 30 atmospheric species

Occultation Technique

Figure courtesy of Dr. Ray Nassar

ACE Latitude Sampling

Motivation

HCFC-22 has replaced CFC-11 and CFC-12

Increase in atmospheric abundance is of concern because of its ozone depletion potential (0.055) and its global warming potential (1810)

The phase out of HCFC-22 began on January 1, 2010

Observations included are based upon atmospheric samples at the surface

CFC Chemistry

CFC-II stratospheric loss process $CFCI_3 + O(^{I}D) \rightarrow 3CI + products$ $CFCI_3 + hv \rightarrow 3CI + products$

CFC-12 stratospheric loss processes $CF_2CI_2 + O(^{I}D) \rightarrow 2CI + products$ $CF_2CI_2 + hv \rightarrow 2CI + products$

HCFC-22 Chemistry

Four reactions govern the loss of HCFC-22 (CHF₂Cl) in the troposphere and stratosphere.

 $CHF_2CI + OH \rightarrow CI + H_2O + products$ $CHF_2CI + O(^{I}D) \rightarrow CI + products$ $CHF_2CI + hv \rightarrow CI + products$ $CHF_2CI + CI \rightarrow HCI + products$

CFC-11 Validated V2.2

CFC-12 Research Product

ACE-FTS data 2004-2010 with extra-vortex occultations only Blue line indicates tropopause calculated by the WMO temperature definition

CFC-11 Seasonal Zonal Means

ACE-FTS data 2004-2010 with extra-vortex occultations only

Blue line indicates tropopause calculated by the WMO temperature definition ¹⁰ DMPs provided by Gloria Manney and William Daffer (JPL)

CFC-12 Seasonal Zonal Means

ACE-FTS data 2004-2010 with extra-vortex occultations only

Blue line indicates tropopause calculated by the WMO temperature definition ¹¹ DMPs provided by Gloria Manney and William Daffer (JPL)

HCFC-22 Seasonal Zonal Means

ACE-FTS data 2004-2010 with extra-vortex occultations only

Blue line indicates tropopause calculated by the WMO temperature definition ¹² DMPs provided by Gloria Manney and William Daffer (JPL)

HCFC-22 Seasonal Zonal Means

ACE-FTS data 2004-2010 with extra-vortex occultations only

Blue line indicates tropopause calculated by the WMO temperature definition ¹⁴ DMPs provided by Gloria Manney and William Daffer (JPL)

Data Comparisons: In situ measurements at the surface

SPECIES	Site	Cape Grim, Australia (CGO)	Mace Head, Ireland (MHD)	Ragged Point, Barbados (RPB)	Cape Matatula, American Samoa (SMO)	Trinidad Head, USA (THD)
	Latitude	40.68° S	53.33° N	13.17° N	14.23° S	41.05° N
CFC-11	Average Difference (%)	-1.50	-3.20	-2.80	-4.04	-3.21
	Std Dev Difference(%)	4.72	2.43	2.63	11.21	3.12
CFC-12	Average Difference (%)	-3.84	-4.72	-4.11	-3.15	-4.09
	Std Dev Difference(%)	2.83	2.40	2.12	1.25	I.68
HCFC-22	Average Difference (%)	10.03	5.64	5.95	11.44	2.94
	Std Dev Difference(%)	3.40	6.96	3.76	3.25	4.59

Surface data courtesy of the AGAGE Network

Global Modeling Initiative Combination Troposphere-Stratosphere Model

- Chemical Transport Model that incorporates reactions that are important in both the troposphere and stratosphere (Rotman et al., 2001)
- ► CFC-11 loss processes CFCI₃ + hv \rightarrow 3Cl + products
- ► CFC-12 loss processes $CF_2CI_2 + O(^{I}D) \rightarrow 2CI + products$

 $CF_2CI_2 + hv \rightarrow 2CI + products$

HCFC-22 loss processes $CHF_2CI + OH \rightarrow CI + H_2O + products$

 $CHF_2CI + O(^{I}D) \rightarrow CI + products$

- Met fields: MERRA Reanalysis
- 2° lat x 2.5° lon x 72 levels (lid at 0.01 hPa)
- Time Period: 2004 2010; monthly mean output

Example Comparison CFC-II: Sept-Oct-Nov

Example Comparison CFC-I2: Sept-Oct-Nov

Example Comparison HCFC-22: Sept-Oct-Nov

HCFC-22 Monthly Global Mean

- Measurements of the zonal mean distribution of CFC-11, CFC-12, and HCFC-22 have been computed.
- The ACE-FTS measurements of these species compare well with surface in situ measurements.
- Comparisons of CFC-11 and CFC-12 with the GMI model show these species are represented well in the troposphere. However, there are differences observed in the stratosphere.
- Large differences between the GMI model and ACE-FTS measurements of HCFC-22 reveal issues with the boundary value mixing ratios.
- ACE-FTS comparisons with models such as GMI can aid in assessment of the quality of winds from data assimilation systems in both the troposphere and the stratosphere.

Acknowledgements

- Funding for ACE is provided by the Canadian Space Agency (CSA) and the Natural Sciences and Engineering Research (NSERC) of Canada.
- This work is supported by a grant from the CSA.
- Thanks to the MkIV and AGAGE teams for making their data available for this analysis.
- Thanks to GMI for providing model output.
- GMI is supported by the NASA Modeling Analysis and Prediction program.

