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What is the stratospheric mean meridional circulation?

It is commonly referred to in the literature as the Brewer-Dobson
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Schematic from Holton et al., 1995, Review of Geophysics



Fundamentally, the BDC is a transport circulation.
We’'re interested in it (and how it changes in a
changing climate) because it transports trace species
into the stratosphere in the tropics, and out of the
stratosphere at mid to high latitudes.

An important thing to note is that it is a Lagrangian-
mean circulation, and cannot be directly measured.



Trace species measurements are how the BDC
was first inferred.

Prior to taking many measurements in the
stratosphere, the general view was that the
stratosphere was essentially free from
vertical motions, and transport of trace
species was a diffusional process.

However, this picture was not consistent with
the latitudinal gradients in ozone that Dobson
measured, nor the vertical profiles of water
vapor that Brewer measured.



First line of evidence Mean Annual Cycle of Ozone
showing there is a TOMS (1978-1993)
circulation in the s 460.

stratosphere

Although produced in the
tropics, ozone columns

are larger at mid to high
latitudes. Eq
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The only way in which we could reconcile the observed high ozone con-
centration in the Arctic in spring and the low concentration within the Tropms

with the hypothesis that the ozone is formed by the action of sunlight, would
be to suppose a general slow poleward drift in the highest atmosphere with a
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slow descent of air near the Pole. Such a current would carry ozone formed in

From Dobson, Harrison and Lawrence, 1929, Proc. Roy. Soc. A




Second line of evidence for the sense of the stratospheric
circulation: Water Vapor

Alan Brewer developed an aircraft borne frost point hygrometer
during WWH-II specifically to assess conditions where contrails
may form (to determine how to avoid making contrails). They flew
on a B-17 (up to 38 Kft) and then a Mosquito (up to 44 Kft), and
got just into the stratosphere over the UK.
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VvAPOUR DISTRIBUTION IN THE STRATOSPHERE ~40°N, 2003, Boulder, CO
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Bottom line, the stratosphere is really dry. ~ femperre®



Brewer (1949) noted that the stratosphere sampled in the
UK was much drier (~3-5 ppmv) than the local minimum

temperatures would produce (~50 ppmv).

Because this air was drier than ice saturation over the UK,
that implied there had to be a circulation bringing that air
from somewhere.

The only location he knew of where temperatures were cold
enough was near the tropical tropopause.
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How has the mean meridional circulation been
quantitatively estimated?
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Kida, 1977 (JMSJ) ran many forward trajectories using GCM. (interested
in both the troposphere and stratosphere.)
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How do we estimate the BDC using output from reanalyses?

1) We can use the Andrews and Mclntyre definition of the TEM residual

velocities. Whether both vbarstar and wbarstar
1 9y === can be calculated depends on whether
ve=y = — _z (PO"' g/ 3:) vertical velocities are a saved

Po parameter. And, as a caveat, the wbar

1 P! L term seems to be a better calculation
(coscpv' e/6, ), when wbar is saved as an averaged
rather than instantaneous field.

Or the mass-weighted isentropic zonal mean (MIM) meridional velocity from Iwaski (1989)
see http://wind.gp.tohoku.ac.jp/mim/

2) We can use the TEM thermodynamic and continuity equations.
Where Qbar can either be

0 v*90  _,00_7n__120 )
': + va % " S Q- Po _Z[Pﬂ(v'g 8¢ /ab, + w 3)] taken from reanalysis output or
calculated using temperatures
! (and possibly cloud info) from
(v * cos@) + ——(pow *) = 0. reanalysis, and constituent
acos$ d¢ Po 0z information from another

source.



How do we estimate the BDC using output from reanalyses?

3) We can use TEM zonal momentum and continuity equations. (Haynes et al., 1991)
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And estimating V-F from reanalyses products
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How do we estimate the BDC using output from reanalyses?

4) Derive constituent distributions using reanalyses winds in a CTM, and look
at the propagation of seasonal signals.
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Another way to judge the accuracy of the BDC in reanalyses; compare
water vapor derived from a simplistic calculation to observations. Here,
NCEP wbarstar and tropopause temperatures were used. Note that
temperatures had to be adjusted (this used the NCEP reanalysis from the
early 1990s), and the circulation appears to be too fast.
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Another metric to look at: Circulation Transit Time (related to age
of air)
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Birner and Boenisch 2011 did a similar calcultion...shown

here are results from CMAM
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From B&B text:

Transit times along the
residual streamlines are
generally smaller for ERA40
and JRAZ25 that for CMAM,
especially in the polar
regions. It is important to note
that transit times here do not
include the effect of two-way
mixing. It can be concluded
that the residual circulation in
the reanalyses is biased fast
compared to CMAM.

Prelim analysis of ERA-I
showed better agreement
with CMAM.



In regards to S-RIP: We need to be able to assess both
1) Differences between the various reanalyses
and

2) Effective accuracy

Another consideration is whether it's possible to
ascertain trends and variability.

And, we need to keep in mind that the mean
meridional circulation is not directly measurable...it
has been inferred from constituent observations.



To assess accuracy, we can look at both absolute values and variations
in quantities that are likely a function of the mean meridional circulation.
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To assess accuracy, we can look at both absolute values and variations in
quantities that are likely a function of the mean meridional circulation.

PPMV
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Example of using different reanalyses to derive a stratospheric field that
can be compared with observations; another way to assess accuracy

Schoeberl, Dessler, and Wang (ACPD, 2012): Used a domain-filling, forward

trajectory calculation model to generate time dependent water vapor fields and
compared with satellite and balloon observations.

water vapor mixing ratio (ppmv)

HALOE & MLS

1995 2000 2005 2010

There are differences between calculations based on
different models, and from observations. Perhaps

possible to devise some sort of ranking of reanalyses
based on this sort of calculation.

ppmv



There are a few papers that have compared the mean meridional
circulation between different reanalyses:

lwasaki et al. 2009 calculated the MIM for JRA-25, ERA-40, ERA-Interim,
NCEP/NCAR and NCEP/DOE.

Eulerian Mean TEM

From Toshiki lwasaki’s
Tohoku University web

page
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1000 Journal of the Meteorological Society of Japan Vol. 87, No. 6
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Seviour et al., 2011 show comparisons between ERA-I and UKMO
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Attribution type calculation
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Figure 8. For ERA-Interim for 1989-2009, mass stream function at 70 hPa for (a) DJF and (b) JJA calculated from W", resolved waves (DF) and
parametrized processes (X) using downward control (DC), and the difference between stream functions calculated from w* and DF.
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What about trends (or decadal variability)?
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Do the reanalyses explain decadal variability in stratospheric species?
HALOE H,0O, 5°S - 5°N
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Figure 10. Tropical HALOE water vapor (tape recorder), 5°S-5°N, plotted versus
time. Note the change to lower values of the hygropause at the end of 2000, and the
upward propagation of those lower values in subsequent years.
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Do the reanalyses have the vertical resolution to start explaining the stratospheric
water vapor decadal variability?

Tropical Sonde Temperature Anomalies
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In an average of tropical sonde data, we see a temperature decrease in the
cold point temperatures that is not obvious in the 100 mb temperatures.



Summary
What I'd like to see from S-RIP

1) An assessment of accuracy for the various reanalyses, with an eye
towards looking at how reasonably the fields can be used to reproduce
constituent fields that are independently observed. (thinking water and
ozone, possibly measurements related to age of air as well, and any
temperature measurements that haven'’t already gone into the reanalysis
process)

Perhaps looks for big signals that we know about...the post 2000
tropical circulation change, the recent NH ozone depletion event.

2) An examination of metrics that describe the upper and lower branches
separately.

3) A comparison of metrics that help with untangling driving factors (resolved
versus unresolved forcings...ie, downward control type calculations)

4) Do we even consider anything regarding trends?



