Assimilation of Earth Rotation Parameters into the Community Atmosphere Model

Lisa Neef^{1,3} & Katja Matthes^{1,2,3}

¹Helmholtz Centre for Geosciences Potsdam (GFZ) ²Free University of Berlin ³ now at Helmholtz Centre for Ocean Research Kiel (GEOMAR)

2012 SPARC Data Assimilation Workshop Socorro, New Mexico

Ι

Motivation

Earth rotation varies in time.

constraint upon atmosphere models.

Atmospheric Effects on Earth Rotation (Examples)

Neef & Matthes 2012

Atmospheric Effects on Earth Rotation (Examples)

Also:

NAM/SAM (Petrick et al., 2012; Marcus et al., 2012) Blocking (Neef and Walther, in progress.) MJO (Dickey et al., 1991)

Excitation of Earth Rotation by Angular Momentum Exchange

Barnes et al. (1983) Gross (2009)

Atmospheric Excitation of Earth Rotation

Geographic Weighting Functions

Barnes et al. (1983) Gross (2009)

Assimilating Earth Rotation Using DART-CAM

The Data Assimilation Research Testbed (DART)

Anderson et al. (2009)

Earth Rotation OSSEs using DART

Given a perfect model and perfect observations, how well can we recover the truth?

Observation Space

Truth Obs Prior Posterior

State Space: Error Reduction in Time

State Space: Error Reduction in Time

Assimilation variables		
All ERPs		
χı only	χ ₂ only	X₃ only

State Space: Error Reduction in Time

no assimilation

50

with assimilation (χ_I)

RMSE

RMSE

Ensemble spread

Towards localizing the Analysis Increment

Mean **ensemble correlations** between U-wind (300 hPa) and the global excitation functions.

- Correlations make dynamical sense.
- Except for strange strong signal in polar regions
- But very small local correlations.
- >> Localization may be difficult.

Summary

- Observed Earth Rotation Parameters (ERPs) translate into atmospheric excitation functions, which are an <u>integral</u> <u>constraint on the state</u>.
- Assimilation best constrains the zonal wind field.
- Assimilating individual excitation functions generally improves things, but all three together makes the analysis worse.
- Improvement limited to ~ first 3 months of assimilation

Outlook: A New Type of Model Constraint?

- Localization: masking out regions with spurious localization.
- A better initial ensemble: constrain with uniform local observations first, then apply ERP observations.
- Can ERPs help to capture specific events, e.g. blocking?
- Once filter divergence is taken care of: application to longer timescales (6 months - years).
- Expansion to DART-CESM and DART-WACCM (2013).

References

- Anderson, J., et al. (2009), The data assimilation research testbed: A community facility, Bull. Am. Met. Soc., pp. 1283–1296, doi:10.1175/2009BAMS2816.1.
- **Barnes, R., et al. (1983)**, Atmospheric angular momentum fluctuations, length-of-day changes and polar motion, Proc. Roy. Soc. London, 387, 31–73.
- **Gross, R. S. (2009)**, Earth rotation variations long period, in Geodesy, Treatise on Geophysics, edited by T. Herring, pp. 239–294, Elsevier.
- **Dickey, J. O., et al (1991)**, Extratropical aspects of the 40-50 day oscillation in length-of-day and atmospheric angular momentum, J. Geophys. Res., 96, 22,643–22,658.
- **Marcus, S. L., et al. (2012)**, De- tection of the earth rotation response to a rapid fluctuation of Southern ocean circulation in november 2009, Geophys. Res. Lett., 39, L04,605, doi:10.1029/2011GL050671.
- Neef and Matthes (2012), Comparison of Earth rotation excitation in data-constrained and unconstrained atmosphere models, J. Geophys. Res., 117, D02(107), doi: 10.1029/2011JD016555.
- **Raeder, K. et al. (2012)**, An Ensemble Data Assimilation System for CESM Atmospheric Models. J. Clim. doi:10.1175/JCLI-D-11-00395.1, in press.
- DART Website: http://www.image.ucar.edu/DAReS/DART/

Extras

Role of the Atmosphere in Excitation of AAM

the rotation vector $\boldsymbol{\omega}$

Liouville equation

If net external torques are zero, changes in relative AM and mass distribution are evened out by changes in the rotation vector.

Changes in Earth Angular Momentum

$$d(I_{ij}\omega_j + h_i)/dt + \epsilon_{ijk}\omega_j(I_{kl}\omega_l + h_k) = \tau_i$$

* Now assume very small perturbations in the MOI and relative AM (in each vector component!)

$$I_{ij}(t) = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix} + \Delta I_{ij}(t) \qquad \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix} = \begin{pmatrix} m_1 \\ m_2 \\ 1+m_3 \end{pmatrix} \Omega$$

$$\dot{m}_1/\sigma_c + m_2 = \chi_2 - \dot{\chi_1}/\Omega$$

$$\dot{m}_2/\sigma_c - m_1 = -\chi_1 - \dot{\chi_2}/\Omega$$

$$\dot{m}_3 = -\dot{\chi_3}$$

Excitation functions χ_i : nondimensionalized angular momentum exchange with Earth`s fluid shell

Atmospheric Angular Momentum

$$p_1 + \frac{\dot{p_2}}{\sigma_0} = \chi_1$$
$$-p_2 + \frac{\dot{p_2}}{\sigma_0} = \chi_2$$
$$\frac{\Delta \text{LOD}}{\text{LOD}_0} = \Delta \chi_3$$

Mass terms (moment of inertia)

Motion terms (AM relative to Earth)

$$\chi_{1}(t) = \frac{1.608}{\Omega (C - A')} [0.684\Omega\Delta I_{13}(t) + \Delta \mathbf{h}(t)]$$

$$\chi_{2}(t) = \frac{1.608}{\Omega (C - A')} [0.684\Omega\Delta \mathbf{I}_{23}(t) + \Delta \mathbf{h}(t)]$$

$$\chi_{3}(t) = \frac{0.997}{\Omega C_{m}} [0.750\Omega\Delta I_{33}(t) + \Delta h_{33}(t)]$$

$$I_{13} = -\int R^{2} \cos\phi \sin\phi \cos\lambda dM$$

$$I_{23} = -\int R^{2} \cos\phi \sin\phi \sin\lambda dM$$

$$I_{33} = \int R^{2} \cos^{2}\phi dM$$

$$h_{1} = -\int R [u \sin\phi \cos\lambda - v \sin\lambda] dM$$

$$h_{2} = -\int R [u \sin\phi \sin\lambda + v \cos\lambda] dM$$

$$h_{3} = \int Ru \cos\phi dM$$

Earth Rotation Measurements

Very Long Baseline Interferometry (VLBI)

Satellite & Lunar Laser Ranging (SLR, LLR)

Global Positioning System (GPS)

Two angles of Polar Motion **p**₁, **p**₂

Localization of the analysis increment around the transfer function maxima

Idea:

Observing only X2, localize the increment where the integral most strongly weights zonal wind.

 $\chi_2^{\rm W} = \frac{-1.43R^3}{\Omega(C-A)a} \int \int \int u\sin\phi\cos\phi\sin\lambda + v\cos\phi\cos\lambda) d\lambda d\phi dp$

