Variability and trends in effective diffusivity in the stratosphere, and their implications for stratospheric circulation changes

Sean Davis^{1,2}, Eric Ray^{1,2}, Karen Rosenlof¹ ¹NOAA Earth Systems Research Laboratory, Boulder, CO ²CIRES, University of Colorado

Overview

- Effective diffusivity as a diagnostic for mixing in reanalyses:
 - Variability (QBO, ENSO, etc.)
 - Discontinuities
 - Trends
- Understanding stratospheric circulation changes
 - Changes in mixing and impact on age-of-air

Effective diffusivity (κ_{eff})

- Effective diffusivity is a mixing diagnostic in equivalent latitude coordinates
- 2D Advection-diffusion equation -> Diffusion-only eq. in equivalent latitude coords
- κ_{eff} related to length of tracer contours
 - − Simple geometry ightarrow small mixing ightarrow small κ_{eff}
 - − Complex geometry → large mixing → large κ_{eff}

•κ_{eff} calculated on isentropes using PV (Haynes and Shuckburgh 2000 a,b, JGR)

• Calculated from 6-hourly data, then monthly averaged

κ_{eff} variability

Calculated from JRA

κ_{eff} variability

κ_{eff} variability – RMS amplitude

JRA data

κ_{eff} intercomparison (mean)

κ_{eff} trends (1979-2008)

- Breakpoint: 12/1998
- ATOVS introduced 11/1998

- Breakpoint: 2/1999
- ATOVS introduced 11/1998

κ_{eff} discontinuities?

Breakpoint removal

κ_{eff} and stratospheric circulation changes

- Models and observations show B-D circulation increases
- Upwelling increases -> decreases in midlatitude age of air
- Ballon-based observations do not show a decrease in age of air
- Could changes in mixing help resolve this apparent discrepancy?

Ch 4., SPARC CCMVal report, 2010

Ray et al., JGR, 2010

Tropical leaky pipe (TLP) model

- Results from Ray et al., JGR, 2010
- Sensitivity of age changes to changes in upwelling, mixing
- <u>Inputs:</u>
 - Vertical profiles of changes in upwelling and in-mixing timescale (τ)
- Outputs:
 - Changes mean age profiles

TLP model: CCMVal w trend

<u>TLP model</u>: CCMVal w trend + NCEP τ trend

Summary

- κ_{eff} is a mixing diagnostic that can be calculated directly from reanalysis PV
- κ_{eff} variability seems reasonable, but likely some fundamental differences in between reanaylses in mean state.
- κ_{eff} from reanalysis PV reveals the possibility that mixing has increased between the tropics-midlatitudes, with the big caveats that
 - trends from reanalyses should always be treated with caution
 - trends are not consistent across all reanalyses
 - discontinuities associated w/ observing system changes
- Midlatitude mean age trends are sensitive to mixing trends
 - Increased mixing \rightarrow increased recirculation \rightarrow increased age
 - Observed mean age and total O_3 trends are consistent with increases in both upwelling and mixing (Ray et al., 2010)

κ_{eff} trends, ± 10° turnaround lat

<u>TLP model results</u>: CCMVal w trend + inferred τ trend

90

TLP model results: Sensitivity to τ trend

Increasing mixing leads to increased age of air, with smaller changes to total O₃

