M-file:
%% EE 212 - FrequencyResponseExample2.m
%
% Description: M-file showing how to plot frequency responses (magnitude
% in dB and phase angle, both versus angular frequency on a logarithmic axis)
% for three circuits. The RL circuit is a high-pass filter, the RC
% circuit is a low-pass filter, and the op-amp circuit with two capacitors
% is a band-pass filter.
%
%% Clear memory; clear command window; close all existing figures
clear; clc; close all;
%% RL circuit's (high-pass) frequency response on logarithmic omega-axes
% vector of 250 logarithmically-spaced frequencies between 10^-2 and 10^2
w = logspace(-2,2,250);
R = 1; L = 1; % values of resistor and inductor
H = (j*w*L)./(R + j*w*L); % (complex) transfer function
figure(1); % open first figure
% plot magnitude response in top half of first figure, and label
subplot(2,1,1);
semilogx(w, 20*log10(abs(H)), 'linewidth', 2);
grid;
xlabel('\omega (rad/sec)'); ylabel('20log(|H(j \omega)|) (dB)')
title('Magnitude Response of RL Circuit''s Transfer Function');
% plot phase response (using degrees) in bottom half of first figure, and label
subplot(2,1,2);
semilogx(w, unwrap(angle(H))*180/pi, 'linewidth', 2);
grid;
xlabel('\omega (rad/sec)'); ylabel('\angle(H(j \omega)) (\circ)')
title('Phase Response of RL Circuit''s Transfer Function');
%% RC circuit's (low-pass) frequency response on logarithmic omega-axes
% vector of 250 logarithmically-spaced frequencies between 10^-2 and 10^2
w = logspace(-2,2,250);
R = 1; C = 1; % values of resistor and capacitor
H = 1./(j*w*R*C + 1); % (complex) transfer function
figure(2); % open second figure
% plot magnitude response in top half of first figure, and label
subplot(2,1,1);
semilogx(w, 20*log10(abs(H)), 'linewidth', 2);
grid;
xlabel('\omega (rad/sec)'); ylabel('20log(|H(j \omega)|) (dB)')
title('Magnitude Response of RC Circuit''s Transfer Function');
% plot phase response (using degrees) in bottom half of first figure, and label
subplot(2,1,2);
semilogx(w, unwrap(angle(H))*180/pi, 'linewidth', 2);
grid;
xlabel('\omega (rad/sec)'); ylabel('\angle(H(j \omega)) (\circ)')
title('Phase Response of RC Circuit''s Transfer Function');
%% Op-amp circuit's (band-pass) frequency response on logarithmic omega-axes
% vector of 250 logarithmically-spaced frequencies between 10^-2 and 10^2
w = logspace(-2,2,250);
H = (-j*w)./(1 + j*w).^2; % (complex) transfer function
figure(3); % open third figure
% plot magnitude response in top half of first figure, and label
subplot(2,1,1);
semilogx(w, 20*log10(abs(H)), 'linewidth', 2);
grid;
xlabel('\omega (rad/sec)'); ylabel('20log(|H(j \omega)|) (dB)')
title('Magnitude Response of Op-amp Circuit''s Transfer Function');
% plot phase response (using degrees) in bottom half of first figure, and label
subplot(2,1,2);
semilogx(w, unwrap(angle(H))*180/pi, 'linewidth', 2);
grid;
xlabel('\omega (rad/sec)'); ylabel('\angle(H(j \omega)) (\circ)')
title('Phase Response of Op-amp Circuit''s Transfer Function');
Figures/Plots Generated: