% % Filename: example6.m % % Description: m-file to compute and plot the truncated Fourier % Series representation of a saw tooth wave. % % *** Plot truncatated FS for various numbers of terms. *** clear; % clear matlab's memory figure(1); clf; % open and clear figure 1 To = 1; wo = 2*pi/To; % fundamental period and frequency D0 = -0.5; % signal offset t = -1:0.01:2; % time over which we'll plot signal N = [1 5 10 50]; % +/- values at which we'll truncate FS for i = 1:4, % compute truncated FS for above N values f = D0*ones(size(t)); % start out with DC bias term for n = -N(i):-1, % loop over negative n Dn = j/(2*pi*n); % Fourier coefficient f = f + real(Dn*exp(j*n*wo*t)); % add FS terms end; for n = 1:N(i), % loop over positive n Dn = j/(2*pi*n); % Fourier coefficient f = f + real(Dn*exp(j*n*wo*t)); % add FS terms end; subplot(2,2,i); % plot truncated FS representation of f(t) plot(t,f); % and actual signal hold on; plot([-1 0 0 1 1 2],[-1 0 -1 0 -1 0],':'); hold off; xlabel('tMatlab Plots Generated:'); ylabel('f(t)'); titlevec = ['Truncated f(t) FS for n = ' num2str(-N(i)),',..,',num2str(N(i))]; title(titlevec); end; % *** Plot exponential magnitude and phase spectra for 1st 4 harmonics clear; % clear matlab's memory figure(2); clf; % open and clear figure 2 To = 1; wo = 2*pi/To; % fundamental period and frequency D0 = -0.5; % signal offset, 0 frequency term i = 1; % vector index to help store Dn and w for n = -4:-1, % loop over negative n Dn(i) = j/(2*pi*n); % Compute & store fourier coef. w(i) = n*wo; % store associated frequency i = i + 1; % increment vector index end; Dn(i) = D0; w(i) = 0; % store 0 frequency terms i = i + 1; % increment vector index for n = 1:4, % loop over positive n Dn(i) = j/(2*pi*n); % Compute & store Fourier coef. w(i) = n*wo; % store associated frequency i = i + 1; % increment vector index; end; subplot(2,1,1); % plot magnitude spectrum of f(t) stem(w,abs(Dn),'filled'); xlabel('\omega '); ylabel('|D_n|'); title('Magnitude Spectrum of f(t) Showing First Four Harmonics'); subplot(2,1,2); % plot phase spectrum of f(t) stem(w,angle(Dn),'filled'); xlabel('\omega '); ylabel('\angle D_n '); title('Phase Spectrum of f(t) Showing First Four Harmonics');