1. P8.5-3 (note: $y[k]-y[k-1]$. Tf[k] is also a valid approximation of an integrator)
2. P8.5-4a
3. P9.1-1 (solve by hand, first three terms $\Rightarrow y[0], y[1], y[2])$
4. P9.1-2 (solve by hand, first three terms $\Rightarrow y[0], y[1], y[2]$)
5. For the difference equations given, determine their order and if they are linear, time-invariant, and causal. Note $\mathrm{y}[\mathrm{k}]$ is the output and $\mathrm{f}[\mathrm{k}]$ the input.
a. $y[k+1]=y[k] f[k-1]$
b. $y[k+2]-5 y[k+1]+7 y[k]+1=4 f[k+1]-2 f[k]$
c. $y[k]+2^{k} y[k-1]+3 y[k-3]=1.5^{k-1} f[k+1]+f[k]$
d. $\quad 3.3 y[k+1]+y[k]-1.2 y[k-1]=2 f[k+1]+2.1 f[k]+2.2 f[k-1]$
6. Consider the RL circuit shown.

a. Compute the output voltage $y(t)$ (express in analytical form) for all $t \$ 0$ when $y\left(0^{-}\right)=0$ and $\mathrm{i}(\mathrm{t})=\mathrm{u}(\mathrm{t})-\mathrm{u}(\mathrm{t}-1)$ where $\mathrm{u}(\mathrm{t})$ is the unit step function.
b. Using Euler's approximation of derivatives with T arbitrary and input $\mathrm{i}(\mathrm{t})$ arbitrary, derive a difference equation model for the RL circuit.
c. Use your answer to part b with $T=0.1 \sec , i(t)=u(t)-u(t-1)$ (that needs to be discretized), and matlab to recursively solve for and plot the approximation of $y(t)$ for $0 \mathrm{sec} \# t \# 5 \mathrm{sec}$. Plot the exact solution from part a on the same graph and compare the results.
7. Consider the differential equation $\frac{d^{2} y(t)}{d t^{2}}+3 \frac{d y(t)}{d t}+2 y(t)=0, y\left(0^{-}\right)=1, \dot{y}\left(0^{-}\right)=0$.
a. Compute $y(t)$ and express in analytical form, then plot $y(t)$ for $0 \sec \# t$ \# 10sec.
b. Using Euler's approximation to the derivative with T arbitrary, derive a difference equation model from the differential equation.
c. Recursively solve your difference equation in part busing $\mathrm{T}=0.4$ and then $\mathrm{T}=0.1$ for $0 \sec \#$ $\mathrm{t} \# 10 \mathrm{sec}$ and plot your results. Compare these numerical solutions to the exact solution plotted in part a. Which time interval T gives a better approximation? Why?
8. Consider the differential equation model of a high-speed vehicle on a horizontal surface

$$
\begin{aligned}
& 12 \frac{d v(t)}{d t}+0.9 v(t)+0.6 v^{2}(t)=f(t) \\
& v\left(0^{-}\right)=7 \\
& f(t)=9 t(u(t)-u(t-5))
\end{aligned}
$$

where $v(t)$ is the vehicle velocity and $f(t)$ is the drive/brake force.
a. Solve for $\mathrm{v}(\mathrm{t})$ as an analytical expression.
b. Using Euler's approximation to the derivative with T arbitrary, derive a difference equation model from the differential equation.
c. Using the answer in part b with $\mathrm{T}=0.2 \mathrm{sec}$, compute and plot the approximation to $\mathrm{v}(\mathrm{t})$ using recursion for 0 sec \#t \#20sec.
d. Using the answer in part b with $\mathrm{T}=2.0 \mathrm{sec}$, compute and plot the approximation to $\mathrm{v}(\mathrm{t})$ using recursion for $0 \mathrm{sec} \# \mathrm{t} \# 20 \mathrm{sec}$.
e. Are you more confident in your approximation from part c or d ? Why?

