EE 544 Homework 5

Consider the second order differential equation $\ddot{y} + 2\zeta \omega_n \dot{y} + \omega_n^2 y = K \omega_n^2 u$ with y the output, u the input, ω_n the undamped natural frequency, ζ the damping ratio, and K the DC gain.

- 1. Represent the system in both state-space form and as a transfer function.
- 2. Show that the poles/eigenvalues are $s_{1,2} = -\sigma \pm j\omega_d$ where $\sigma = \zeta \omega_n$ is the damping factor and $\omega_d = \omega_n \sqrt{1 \zeta^2}$ is the damped natural frequency.
- 3. Solve for step response assuming an underdamped system, i.e., that $s_{1,2}$ are complex.
- 4. Show that the steady-state value of y is K.
- 5. Show that the time to the maximum (peak) is $T_p = \frac{\pi}{\omega_d}$ and that the overshoot is

$$M_p = K e^{-\zeta \pi/\sqrt{1-\zeta^2}}$$

- 6. Show that the 1% settling time is $T_s \approx \frac{4.6}{\sigma}$. What would the 5% settling time be in terms of σ ?
- 7. Rise time T_r is a little more difficult to relate to poles/eigenvalues. Search around and see what you can find for a relationship (most often approximated as an average from range of

responses). $T_r \approx \frac{1.8}{\omega_n}$ is one I've seen used.

8. Pick values, say $K=2, \omega_n=4, \zeta=0.4$, such that response is underdamped and plot response (either numerically solve DE or directly plot y(t)). Confirm metrics by matching values on plot to calculated/expected values.